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ABSTRACT 

All communication systems a r e  subject o t  approximation error .  A n  in -  

evitable source of e r ro r  i s  the  difference between the  real ized signals 

and f i l t e r s  and the  intended ones. I n  general, quantative analysis of the 

e f fec t  of these discrepencies i s  quite d i f f i cu l t ,  and even the selection 

of an e r ror  c r i te r ion  tha t  i s  both physically meaning= and mathematically 

t rac tab le  may be a problem i n  i t s e l f .  

the so called correlation detectors or matched f i l t e r s ,  an er ror  analysis 

f r e e  of the s ignal  and f i l ter  de t a i l  can be carr ied out.  

receivers makes the choice of the mathematically t rac tab le  integral-squared- 

e r ror  c r i te r ion  a physically m e a n i n g f u l  one. 

cause t3e actual  performance of matched f i l t e r  receivers t o  be l e s s  than 

t h e i r  e q e c t e d  performance are: 

t h e i r  intended design or the  transmitted signals may be d i f fe ren t  from t h e i r  

designed waveforms; (2) The channel may a l t e r  the waveforms of the transmitted 

signals; ( 3 )  If a discrete  receiver i s  used, it may not be a suff ic ient ly  

good approxhation of the  analog receiver.  

However, fo r  a large c lass  of receivers, 

The nature of these 

Some of the  factors  which may 

(1) "he matched fi l ters may deviate from 

The ef fec t  of these discrepencies on probabili ty of e r ror  f o r  three 

binary systems is considered. 

ance of On-Off, Antipodal, and Orthogonal Signal Systems due t o  mismatching 

of the  signals or  the f i l t e r s o  

Signals System i s  potent ia l ly  the most sensi t ive of the  three systems 

considered, and tha t  for  t h i s  case, mismatching of the signals i s  more serious 

than the same amount of mismatch i n  the  f i l t e r s .  

Bounds a re  obtained on degradation of perform- 

It i s  shown tha t  the Equal-Energy-Orthogonal- 
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I n  an attempt t o  compensate for the  errors  due t o  (2), procedures a re  

developed which allow the  transmitted signals t o  be "pre-distorted" i n  order 
-.- 

t h a t  the received signals have a desired relationship (e.g. t he  transmitted 

signals might be constructed so that the received signals a re  orthogonal). 

Examination of the  e r ror  arising from ( 3 )  brings t o  l i g h t  some subt le t ies  
. .  

concerning the discrete  receiver, pa r t i cu lwly  the concepts of f i n i t e -  

dimensional signal representation. In  connection with t h i s  l a t t e r  problem 

we derive some u s e m  and ccanputationally simple expressions fo r  the approx- 

imation error  incurred i n  approximating a countable sum of exponentials by 

z.ii elexen+ nf the  snhspce s p w e d  by ~l f i n i t e  number of other eqonent ia l s .  
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Chapter 1 

INTRODUCTION 

1.1 Signal Design in Communication Systems 

It is probably true that, as stated by Brennan ( 9  1, "in the last 

analysis, cmunication systems are designed by' seat-of-the-pants ' engineering 
let no forest of formulae --- suggest otherwise." 
Theory" has been one of providing upper and lower bounds on the performance of 

communication systems. 

of real communication systems, limits on performance has been obtained, thus 

by-passing profitless experiments and innovations. 

established "seat-of -the-pants-engineered" systems are already operating 

very close to attainable limits does not detract from the results of 

comunication theory in providing these limits. 

The role of "Cammunication 

Ey analysis based mi =ore or l e a s  idealized ~ ~ 6 2 1 s  

The fact that long 

The above quotation concerning design of real communicatfon systems is 

certainly revelent to that part of communication system design concerning the 

information-bearing signals. Nonetheless, studies of the properties of 

signals, their selection, optimization, realization, etc., are important 

and usef'tii in their own right, although immediate application in this or 

that communication system may not be evident. 

signals and viceversa is neither meaningful nor feasible. 

a joint concern for the signals and systems. 

with signal theory in relation to system theory (not necessarily communication 

system theory) may be found in [34] 

A study of systems w5thout 

There is invariably 

A collection of papers dealing 

In digital communication systems, application of statistical decision 

theory has proven to be of value not only in providing limits of performance, 
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but also in suggesting ways by which better digital systems may be built. 

The statistical decision theory approach is not without its limitations, and 

it is certainly no panacea for communication problems. Not the least of 

its limitations is the functional complexity involved when the signals are 

corrupted by other than additive gaussian noise. 

in a digital cornmication by the decision as to which one of several possible 

signals has been transmitted. By assigning costs to various types of errors, 

a receiver structure which minimizes the average cost may, in some cases, 

be found. In an "optimum" receiver structure can be derived for arbitrary 

signals, the average cost may, in principle, be f'urther reduced by proper 

choice of the transmitted signals. The "proper choice" of the transmitted 

signals is influenced by the channel, or media, through which the signals 

propagate, and the properties of the noise corrupting the signals. 

one exception [35], minimum cost or Bayes receivers are developed on the 

assumption that the received signal is neither preceded nor followed by any 

other signal. 

assumed to have little effect on the system. 

to enhance the performance of a Bayes receiver is, of course, precluded 

when the form of the receiver is not known (eq. for non-gaussian noise, 

general multiplicative disturbances, overlapping signals etc.). 

the optimization procedure may be successfully carried out and the waveforms 

of the optimum signals explicitly presented, practical considerations may 

prohibit actual generation of the optimum signals. 

performance of "more practical" signals be campared to that which might be 

obtained using the optimum signals. 

The "information" is conveyed 

With perhaps 

That is, the effect of signal-overlap is either ignored or is 

The selection of optimum signals 

Even when 

At any rate, the 

1.2 Approximation and Error 

All ccamnunication systems are subject to approximation error whether 

it comes about from the inevitable differences in the actual signals, filters, 
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etc. and the intended ones, or more basically, the difference in the actual 

system and the model on which the analysis was based. 

analysis of the effect of these discrepencies is quite difficult, and even 

the selection of an error criterion that is both physically meaningflrl and 

mathematically tractable may be a problem in itself. In general, different 

communication systems with their given signals, channels, and receivers are 

subject to different analysis as regards their sensitivity to changes or 

derivations in their signals, filters, etc. However, for a large class of 

receivers, the so-called correlation detectors or matched filter, an error 

analysis free of the signal and filter detail can be carried out. 

assumptions of fixed signals and additive gaui3sia.n noise, the receiver 

structure obtained from the Bayes formulation takes the form of a correlation 

detector. 

magnitude and sign of a statistic obtained by correlating the input data 

with known signal data. 

to the amount of energy in the signal during the correlation time interval. 

The fact that for these systems the performance is affected only by the 

apparent loss or gain of energy during the observation time interval makes 

the integral-squared error criterion ideally suited for examining the 

sensitivity of performance to deviations in the signals and filters. 

In general, quantitative 

Under the 

The decision as to which signal was transmitted is based on tRe 

The number obtained by this process is proportional 

1.3 Factors which affect System Performance 

The degradation of the expected performance of matched filter receivers 

may come about for several reasons: 

(1) The channel may alter the waveforms of the transmitted 

signals 

The matched filters may deviate from their intended design 

The discrete receiver may not be a sufficiently good 

approximation of the analog receiver. 

(2) 

(3) 
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The overall system considered here may be visualized as having a channel 

consisting of a waveform distorting filter followed by additive gaussian 

noise, and a receiver which is a correlator or matched filter. 

The effect of these errors on probability of error for three binary 

systems is considered in Chapter I1 where the criterion of approximation error 

is taken to be the integral-squared-error. 

developed to compensate for the waveform-distortion of the channel. 

transmitted signals are "pre-distorted" so that the received signals have a 

desired relationship. 

In Chapter 111, procedures are 

The 

Consideration of the error arising from (3) brings 

to light some subtlties concerning the discrete receiver, and in particular, 

the concept of finite-dimensional signal representation and the choice of 

coordinates used in the discrete receiver. 

1.4 Outline of the Thesis 

Chapter I1 is concerned mainly with the effects of filter and signal 

We show that for the on-off mismatch for three important binary systems. 

and antipodal systems, the sensitivity of performance (probability of error) 

is a function of only the magnitude of the integral-squared-error between the 

intended signal and the actual signal. 

performance is obtained whether the error is due to the fact that the intended 

signal and the actual signal are different, or whether the actual matched 

filters differ f rom the ideal matched filters. The most interesting case 

is that of an equal-energy orthogonal-signal system. 

Moreover, the same degradation in 

In contrast to the 

above two cases, we show that the character of the approximate signals (not 

just the magnitude of the integral-squared-error ) has considerable influence 

on system performance. Also, for the same magnitude of error, it is shown 

that the cases of "imperfect signals and ideal filters," and "imperfect 

filters and ideal signals" w e  significantly different. In particular, 



-5- 

f i l t e r  approximation error i s  found t o  be l e s s  serious than signal 

approximation error .  

for  a given approximation error .  

Bounds are obtained on the sens i t iv i ty  of performance 

“he first par t  of Chapter I1 provides motivation for  the la t ter  part ,  

and deals with the selection of opthum signals t o  provide maximum signal- 

to-noise r a t i o  at the receiver. It i s  shown tha t  even fo r  colored noise, 

t he  optimum receiver i s  a matched fi l ter  when the signal i s  optimum thus 

providing jus t i f ica t ion  for  consideration of only matched f i l t e r  receivers. 

Chapter III considers one source of the mismatched error considered i n  

Chapter 11; channel dis tor t ion o f t h e  transmitted signals. If the signals 

are received i n  the presence of white gaussian noise, it i s  well known t ha t  

the t o t a l  probability of error depends only on the pair-wise correlations 

(or inner products) of the received signals. 

procedures are developed which provide transmitted signals having the property 

tha t  the received signals have a desired inner product matrix. The Functional 

form of the channel is not required. 

l inear  and tha t  the inner products of the output signals can be measured by 

any convenient method. However, even when the construction procedure i s  

carried out exactly, approximation e r ror  of t he  type considered i n  Chapter I1 

m u s t  s t i l l  be considered due t o  the approximation of the method used t o  

measure the inner products of the output signals. 

the receiver may be o f t h e  discrete type which operates on some N-tuple 

representation of the  signal such as i t s  time samples. 

actual signals must be analog waveforms whether the receiver i s  discrete or 

not. 

Camputationally simple 

It i s  required only tha t  the channel be 

As a matter of convenience, 

In  any case, the 

I n  Chapter N we examine some aspects of the problem of characterizing a 

time waveform by an ordered N-tuple. If the f i l t e r s  are approxi.ma.ted by a 
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finite linear combination of other functions (e.g. by a lumped parameter 

filter), the effect of the approximation error is given by the result in 

Chapter 11. 

coordinates, or if the number of coordinates is constrained, intriging 

but apparently quite difficult mathematical problems are uncovered. 

Abstractly, the problem becomes that of finding "best" finite-dimensional 

representations for given classes of signals. An attempt is made to make 

precise the intuitive notion of a set of signals being "essentially finite- 

dimensional". Even for mathematically well defined sets of signals, the 

problem is extremely difficult. 

by the inability to adequately describe the ensemble of signals. 

a l l  one can do is choose a finite set of representation functions and compute 

the resulting approximation error. 

Also, if the receiver is constrained to the use of particular 

For actual signals, the problem is compounded 

Practically, 

A particularly convenient set (both 

mathematically and physically) of representation functions are the exponential 

f'unctions as has been amply demonstrated particularly by W.H. Huggins and 

his co-workers at Johns Hopkins University. 

some rather remarkably simple and computationally useful approximation- 

error expressions for representation by exponential functions which flrther 

extends the useflilness of the exponential functions. 

In this connection, we develop 

Although explicit results were not obtained for the problem of finding 

best" approximating flrnctions for a prescribed class of signals, some useful I t  

bounds were obtained on the maximum error to be expected using any set of N 

functions to approximate any one of a set of M signals. 

the effect of the number of required signal coordinates for the case of 

conditional maximum likelihood estimates of the signal coordinates. 

Also we examine 

I 
1 
I 
I 
1 
I 
I 
I 
I 
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Chapter 2 

SIGNAL SEUCTION AND MISMATCH ERROR 

2.1 Introduction 

In the design of communication receivers it is invariably the case 

that the actual receivers or filters differ from their intended design. 

Moreover, due to the properties of the propagation media, the received 

signals differ from those for which the receiver was designed. These 

discrepencies may lead to a significant degradation in overall system 

performance especially in the case where the receiver is designed to 

receive orthogonal signals. It is possible that by proper selection 

of the signals to be transmitted, the performance of the system may be 

improved. 

waveforms differ frm the transmitted waveforms. Here the transmitted 

waveforms are selected so that the received waveforms arrive with the 

largest possible energy. 

may be selected so that their energy is concentrated in that portion 

of the frequency bound where the noise power density is lower. 

expressions can be developed for the optimum transmitted waveforms 

This is the case if the channel is such that the received 

If the additive noise is not white, the signals 

Explicit 

although actual solutions are diffbcult to obtain. 

the "best" waveform is obtained, practical considerations may prohibit 

actual construction, and other signals which are easier to generate 

accurately may be sought whose performance is "close" to that of the 

opthum signal. 

solutions for optimum waveforms axe obtained and their performance campared 

Even if the form of 

Some examples.are given in this chapter where explicit 
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w i t h  other signals chosen on the basis of t h e i r  ease of generation. The 

degree t o  which system performance i s  degraded due t o  the deviations of 

the actual signals and f i l t e r s  from the intended cnes i s  examined for  

binary systems u t i l i z ing  three types of signaling schemes; on-off, 

orthogonal, and anki-podal signals.  Bounds on the degradation i n  

probabili ty of error due t o  approximation e r rors  a re  obtained where the 

receiver structure has the form of a matched f i l t e r .  Since the optimum 

receiver i s  a matched f i l t e r  for  the case where the noise i s  white, and 

it i s  easi ly  shown tha t  fo r  the  case where the  noise i s  colored, the 

optimum receiver i s  also a matched f i l t e r  i f  the  optimum signals are  

used, it suffices t o  consider the problem of finding the  degradation 

i n  performance due t o  t h e  deviation of the  actual  signals from the  

intended signals and the deviation of the actual  f i l t e r s  from the  intended 

matched fi l ters.  

2.2 Correlation Detectors and Matched F i l t e r s  

A f i l t e r  with impulse response h ( t )  i s  said t o  be matched t o  a s ignal  

x ( t )  if h ( t )  = K x(a-t)  where K and (31 are  a rb i t ra ry  r e a l  constants. If 

a signal y ( t )  i s  applied t o  a f i l t e r  whose impulse response i s  given by 

h ( t )  = x(T-t), the f i l t e r  output y ( t )  i s  given by 

c 

The value of y( t )  at time T is then given by 
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The number obtained by multiplying x ( t )  by y ( t ) ,  integrating the product 

from t=o t o  t = T  is  the same as the number obtained by sampling, a t  t=T, 

the  output of a f i l t e r  with impulse response h ( t )  = x(T-t) when y ( t )  i s  

the  input t o  the f i l t e r .  For th i s  reason, the operation of correlating 

x ( t )  with y ( t )  (multiplying x ( t )  by y ( t )  and integrating from t=o t o  t=T) 

i s  sa id  t o  be equivalent t o  passing y ( t )  through a f i l t e r  matched t o  x ( t ) .  

If a l inear  f i l t e r  with impulse response h ( t )  acts  on an input m ( t )  = 

x ( t )  + n(t) where x( t )  is  a known time function and n't), the noise, i s  

a sample function from a wide-sense stationary random process, the output 

signal-to-noise r a t i o  

i s  maximized at  t = T i f  h ( t )  i s  the solution t o  the  in tegra l  equation 

If the noise i s  white, Rm(t-B) = s(t-B), and h ( t )  = x(T-t). That is, 

the  f i l t e r  is  matched t o  x ( t ) .  The signal component of the  output, y ( t ) ,  

evaluated a t  t = T has the value 

y(T) =ST x2(t)dt = I!+ 

0 

called the energy'') i n  x ( t )  over the  time in te rva l  (0,T). 

2.3 Optimum Waveforms for  Signals i n  Colored Noise 

The optimum (minimum probability of e r ror )  receiver s t ructure  for  

deciding whether "signal plus noise" or  "noise only" was present during 

the  observation in te rva l  (0,T) is a matched f i l t e r  i f  the noise i s  white 



-10- 

and gaussian [l].The signal component of the  output of the  matched f i l t e r  
rn 
J. 

a t  t = T is  given by E, = r x2( t ) .  The expected value of the output 
J o  

noise coqonent a t  t = T is  given by NoE where No i s  the  spectral  density 

of the noise. For any signal x ( t )  with energy'') E, t he  value of the  

output of the matched f i l t e r  at  t = T i s  the same. The choice of signal 

waveform, then, does not influence the system performance so long as the 

f i l t e r  i s  matchedto the signal and the background noise is  white. If the 

background noise is colored, however, one can f ind signals whose waveforms 

are  perferable t o  others a s  is shown by Middleton [2]. Here we derive the 

same resu l t  and use it t o  show tha t  the optimum f i l t e r  i n  t h i s  case i s  

also a matched f i l t e r  i f  the signal i s  the optimum signal .  That is, the 

opthum f i l t e r  i s  simply a f i l t e r  matched t o  the signal which produces the 

maximum signal-to-noise r a t io .  

Suppose the  additive gaussian noise has an autocorrelation function 

The optimum receiver structure for  deciding "signal plus noise" R m ( ~ ) .  

or "noise only" i s  a f i l t e r  with impulse response h ( t )  where h ( t )  s a t i s f i e s  

the in tegra l  equation [l] 

Since the input n o i s e  i s  gaussian, the sample at  t = T of t he  output of the  

f i l t e r  i s  a gaussian random variable whose mean i s  the output signal component 

po(T). 

signal x ( t )  so as t o  maximize the signal-to-noise r a t i o  defined by 

The probability of e r ror  may be decreased fur ther  by choosing the  input 

Although the  term "energy" i s  widely used t o  denote the integral  of the 
square of a time function, it i s  best  t o  point out here tha t  it does not 
represent the energy supplied t o  the f i l t e r .  The energy supplied t o  the 
f i l t e r  i s  proportional t o  the in tegra l  of the square of the  input signal 
only i f  the  input impedance i s  purely res i s t ive .  
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where no i s  the noise component o f  the output of the f i l t e r .  The expected 

value of t h e  square of - the  output noise sample at  t = T may be writ ten as 

2 T 
E[n:] = E { L  n(.r) x(T-T) dT) 

(2-2) 

The square of the output signal component a t  t = T is  given by 

substi tuting eq. (2-1) i n to  eq. (2-2) J we have 

Dividing eq. (2-3) by eq. (2-4) yields 

= s,' h(.r) x ( T - 7 )  d.r N (2-5) 

but by the schwortz inequality, (2-5) i s  maximum when 

h(.r) = x(T-7) 

From eq. (2-1) we have tha t  

a This equation has solution when E = hj ,  j = 1, 2J where h m e  the 5 
eigenvalues of (2-6). U s i n g  the jth e igenmct ion  as a signal, it is  

seen tha t  the optimum f i l ter  i s  s t i l l  a matched f i l t e r ,  producing a 

S/N of 

. S/N = SOT s2(T-B) @ = E h j  a (2-7) 
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We seek then the e i g e n m c t i o n  corresponding t o  the la rges t  eigenvalue. 

course the eigenvalues may become a r b i t r a r i l y  large ( i . e .  there  ex i s t s  no 

largest  eigenvalue) indicating tha t  without fur ther  res t r ic t ions ,  one can do 

a r b i t r a r i l y  well i n  colored noise. 

has become colored by passing through a physically real izable  f i l t e r .  

is, of course, in tu i t ive ly  obvious i f ,  say the noise spectrum f a l l s  off as  

O f  

This i s  always the  case i f  the noise 

This  

- 
X h 

I 

0 
0(-2), one would place the signal a t  a high enough frequency so tha t  the 

l eve l  of the noise i s  negligible.  

constraints are  placed on the s ignal .  

t o  place such constraints i n  a var ia t ional  problem of t h i s  type. 

The above is  t rue  i f  no bandwidth 

It seeems t o  be extremely d i f f i c u l t  

Y +m 

2.4 Optimum Waveforms for  Channels with Impulse Response h ( t ) -  

It i s  implicit i n  the above discussion that the  received waveform 

has the same waveform as the transmitted waveform. 

is assumed t h a t  the transmitted waveform x ( t )  has passed through a f i l t e r  

with impulse response h ( t )  where the output y ( t )  i s  corrupted by additive 

stationary white noise  (Fig.  2-1) 

I n  the following, it 

n 
Channel With Impulse Response h ( t ) .  W 

Fig. 2-1 

As has been previously demonstrated, there  i s  no preferred s ignal  

waveform when t h e  additive noise i s  white; a l l  signals w i t h  equal energy 

are  equally desirable. 

t o  maximize the  energy i n  y ( w i t h  an energy constaint on x) during the  

observation time T .  

It follows then t h a t  x should be selected so as 

1 
I 
I 
1 
1 
I 
1 
I 
I 
I 
1 
1 
1 
1 
1 
1 
1 
1 
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The 1950 paper by Chalk [4] provides a p a r t i a l  solution t o  t h i s  problem. 

This paper was primarily concerned with the interference problem and 

essent ia l ly  attempts t o  find the pulse type waveform which maximizes the 

energy received i n  the whole interval (0, 0 . ) .  The extension t o  the case 

above i s  easi ly  done although a time domain approach seems t o  yield the 

answer  i n  a more s t ra ight  forward manner. 

Specifically, l e t  the channel be represented by i t s  impulse response 

W e  wish t o  f ind the input pulse x( t )  having uni t  energy which is  h ( t ) .  

non-zero only on (0, T)  which maximizes the energy received i n  (0, T)  at  

the output. Now 

J 
0 

where the  r ight  hand side of (8) 

(h( t )  = 0 t < 0) and also a l l o w s  

expresses the fac t  t ha t  h ( t )  i s  realizable 

use of def ini te  limits., p i s  the unit  s tep 

. Then writing the square of (8) as l x > O  
function defined as p(x) = {o 2 
an i te ra ted  integral  we have 

Define 
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Then from (2-10) we have 

0 0  - rx 2 
We wish t o  maximize (2-12) subject t o  the constraint t ha t  x (8) @ = 1. 

J O  
The solution may be obtained d i rec t ly  v ia  a theorem [3] t ha t  the maximum 

of (2-12) i s  obtained when x(CY) i s  an eigenfunction of the in tegra l  equation 

corresponding t o  the  largest  eigenvalue. 

the largest  eigenvalue of (2-13). 

The maximum of (2-12) i s  equal t o  

From (2-11) it is  seen tha t  H(a,  S )  = H(f3, CY), i .e. H i s  symmetric. 

The opthum signals then enjoy the special  properties of eigenfunctions of 

integral  equations with symmetric kernels [3] .  

orthogonal, the  eigenvalues are r e a l  

The eigenfunctions are  

and (by v i r tue  of (2-10) posi t ive.  

Moreover the  output signals due t o  these eigenfunctions are also orthogonal 

over (0, T ) .  If x ( t )  i s  the  jth eigenfunction of (2-13) with 

the response t o  x ( t )  has energy A; some of these properties w i l l  be made 

= 1, then 

use of i n  Chapter IV. 

We note here tha t  maximizing the energy i n  (0,  T) a t  the  output does 

not imply t h a t  the energy outside T i s  minimized. 

interference may r e su l t  i f  the  input pulses are transmitted every T seconds. 

Considerable interpulse 

An interesting property of these optimum signals i s  tha t  i n  order t o  

maximize the  output energy i n  (0,  T )  for  a realizable - - -- m, the  

be driven t o  zero a t  t = T. 

H(T, 13) = 0, then from (2-13), x(T) = 0. 

input must 

This i s  seen by noting from (2-11) t ha t  - ---- - 
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We now consider an example using a simple RC c i rcu i t ,  where the  form of 

the  optimum signals may be obtained. 

Example: Let h ( t )  = p(t) ,  which is the impulse response of a 

lowpass RC c i r cu i t .  Then 

T 
H(a, f3) = b 2 L  h(t-a) h(t-B) p(t-a) p(t-B) d t  

J B  

(2-14) 

(2-15) 

Substi tuting (2-16) in to  (2-17) we have 

J T  

Differentiating (2-18) w i t h  respect t o  

J T  

01, we have 
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Subtracting (2-19) from (2-18) yields 

Differentiating (2-20), we have 

(2-20) 

Multiplying (2-20) by b and adding (2-21) yields f i n a l l y  

(2-22) 

1 - x  Let B2 = - The solutions of (2-17) must then sa t i s fy  (2-22). 

The solution of (2-22) has the form 

A *  

$(t) = A cos 6bt + B s i n  6bt.  (2-23 1 

We have additional information tha t ,  as  was noted ea r l i e r ,  $(T) = 0. 

This requires that  

t an  6~ = - A/B (2-24) 

rewriting (2-23), we have 

$(t) = B [-Tan 6bT cos 6bt + s i n  6bt ] .  (2-25) 

Since the solution of (2-17) i s  independent of B, we replace it by unity.  

With X replaced by -2 i n  (2-1’0, (2-25) i s  substi tuted in to  (2-17) t o  

determine 6 or 6?s t ha t  s a t i s fy  the in tegra l  equation (2-17) - It turns  

out t ha t  (2-25) s a t i s f i e s  (2-17) i f  

1 

1+6 

1 
I Tan 6bT = - 6 (2-26) 
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Verification that  t h i s  is t rue is  strai@;htforwarrd but is rather tedious 

and is  omitted here. 

W e  solve (2-26) for  the case bT = 1. By trial and error we f ind the 

smallest non-zero solution of (2-26) t o  be 

2.029 c 6 < 2.030 

and 0.1952 < h < 0.1954. 

That is, the maximum r a t i o  of for  this system i s  about 

J O  

0.195 (for bT = l), and i s  attained w5th input signals of the form (2-25), 

-&ere 6 is giver, by (2-26). 

Differential Equation Formulation 

For i l l u s t r a t ive  purposes, the problem is  now formulated u t i l i z ing  the  

d i f fe ren t ia l  equation o f t h e  simple RC c i rcu i t .  The input x is  related t o  

the output y by the different ia l  

y + by = bx 

we now seek t o  maximizeL T 2  y (t) 

unity. Equivalently, we seek t o  

J 
0 

For which the m e r  equation 651 

equation 

(2-27) 

d t  while constraining (t) dt t o  say 

extremize the integral  

0 

(2-28) 

(2-29) 

(2-30)  
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becomes 

(2-31) 
* '  1 - 1  2 y +  h b  y = O  

Two end conditions a re  needed here. 

square integrable inputs, the output i s  zero at  t = 0, i . e .  y(o) = 0. 

The other comes from the unde$e&ned r igh t  end point condition 

One i s  found by noting tha t  for  

or 

- 0  1' g Y + Y  I t = T  (2-33) 

1 '  
b but x = - y + y so (2-33) implies x(T) = 0, agreeing with the general 

condition found ea r l i e r  t ha t  the optimum signal fo r  any real izable  f i l t e r  

drives the input t o  zero at t = T .  The general solution of (2-31) (for 

0 A < 1) i s  given by 

y ( t )  = A cos 6bt + B s i n  6bt 

where - - A = S2. h Imposing the above endpoint conditions yields 

y ( t )  = B sin 6bt 

(2-34) 

(2-35 1 

where 6 is  given by 

Tan 6bT= - 6 (2-36) 

This solution agrees with the previous solution as it should, and 

was  obtained with a good deal l e s s  e f fo r t .  Although the  formulation of the  

problem i n  terms of the  impulse response of the  f i l t e r  i s  more general, 

expl ic i t  solutions of equations such as (2-13) with f i n i t e  limits are  known 

only for  a few special  types of kernels. Since i f  the f i l t e r  i s  such tha t  



L e  inpu, and ou-put are related by an o rdna ry  d i f fe ren t ia l  equation, the 

solution of (2-13) must reduce t o  the solution of an N e r  equation derived 

using the d i f fe ren t ia l  equation, it i s  more direct  t o  use the  d i f fe ren t ia l  

equation approach. Moreover, there seeems t o  be no way of including endpoint 

constraints using the i n t e g r a l  equation approach. For systems of higher 

order one encounters the well known d i f f i cu l t i e s  of solving d i f fe ren t ia l  

equations with conditions specified a t  each endpoint, leading t o  solution 

of s e t s  of transcendental equations. 

as important as finding the largest  possible values Q = 

r T x 2 ( t )  d t  and comparing t h i s  value with the  performance obtained from sig- 
“ 0  
nals that axe more eas i9and accurately generated. 

se lec t  x ( t )  = E 

However, the actual  waveforms are not 

y (t) d t  s,’ 
For example, i f  we 

-ut the system i s  being driven a t  i t s  natural  frequency, 

and we would expect f a i r l y  good performance. For bT = 1 we find tha t  

We note tha t  input signals of the form (2-26), x ( t )  = 6 cos 6bt + s i n  6bt, 

produce output signals having no t ransient  terms. In  the frequency domain 

the input signal is such tha t  i t  contains a zero where the f i l t e r  has a 

pole. 

In  the above formulations of the problem of maximizing Q, no consideration 

was  given t o  the behavior of y ( t )  for  t > T. 

y ( t )  = 0 for  t > T may be considered using the method of Diamond and Gerst [ 6 ]  

The other extreme of requiring 

for  f i l t e r s  whose input and output are re la ted by an ordinary d i f fe ren t ia l  

equation. 

A detailed investigation of t h i s  case i s  presently being conducted by H. 

Schwarzlander [ 333 a t  Purdue University. 

%ax- 
The penalty for  requiring y ( t )  = 0 t > T i s  a decrease i n  
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When the output is constrained to be a pulse the solution for the RC 

circuit is given in [17](2). 

requires roughly twice as much "Energy" as does the optimum input .signal 

given by (2-25) (for the same output "energy" in (0, T)). 

For bT = 1, the optimum pulse producing input 

2.5 Approximation Errors 

Inevitably, approximation errors arise when 8n attempt is made to 

synthesize a matched filter for a given signal. On the other hand the 

filter may be quite closely matched to the intended signal, but dispersion 

of the channel, imperfect syncronization, etc. the actual received signal 

may differ from the intended signal. The filter synthesis problem may play 

a large role in selecting the transmitted signals i.e. select those signals 

whose matched filters may be more easily and accurately built. 

Here we examine the effect of approximation error on probability of 

error for some particular binary detection systems. 

We first introduce some notation that is used neither for elegance 

nor generalitybut is simply less cumbersome and is also easier to type. 

Let r x(t) y(t) dt = (x, y) and call this number the "inner product of 
J T  

x and "y". Then let (x, x)'I2 = I I x I I which is called the "norm" of x. 

We consider now the problem of deciding whether a known signal x is 

present along with white gaussian noise, or whether noise alone is present, 

i.e. the "on-off" case. The form of the optimum receiver is well known 

(2) There is an error here; the right hand sides of Eqs. (10) and (11) 
in [7] should be multiplied by RC. 

I 
1 
1 
1 
I 
I 
I 
1 

1 
I 
I 
I 
I 
1 
1 
I 
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and i s  shown i n  Fig. (2-2). 

7 E/2 + Signal 

< E/2 j Noise 

Fig* 2-2 

Optimum Receiver for On-Off Case 

I n  all the  cases tha t  are t o  follow, the two signals are  considered t o  

have equal a p r i o r i  probabili t ies of occurance and tha t  the  cost of mistaking 

e i the r  s ignal  fo r  the  other is  the same. In  the "on-off'' case, w i t h  s ignal  

energy" E, t h i s  s e t  of assumptions r e su l t s  i n  the receiver announcing 

E E E 
2 

n 

"signal plus noise" i f  z(T) > z j  and "noise only" i f  z(T) < 5, where - i s  

cal led the  threshold. I n  the  two other cases t o  follow (equal energy 

orthogonal signals, and anti-podal signals) the threshold is  zero. 

examine the e f fec ts  of "mismatch" of the  signal and the  f i l t e r .  

We 

If the 

selected signal i s  x*, the actual s ignal  used may differ somewhat from x*, 

and moreover the  matched f i l t e r  may a l s o  d i f f e r  from the intended signal-x, 

We consider here tha t  e i ther . the  f i l t e r  i s  exact, and the  s ignal  i s  i n  

error,  or vice versa.  

The c r i te r ion  of e r ror  here is taken t o  be the normalized square 

e r ror  

(2-37) 

I n  order t o  insure tha t  the  error is due t o  mismatch and not amplitude 

difference, we s e t  I I x I I = E where E i s  the "energy" i n  the  2 
= I I x* I I 

signal .  The signal component of the  output of the  matched f i l t e r  i s  E 
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i f  the signal is present and the f i l t e r  i s  perfect ly  matched t o  the s ignal .  

If the f i l t e r  is matched t o  x+ and signal x i s  sent, the  output of the 

matched f i l t e r  is  given by (x, x+). Rewriting (2-37), 

11x11 - I I x * I I  
2 2 

= I I x+ I I recal l ing tha t  I I x I I = E, we have 

2 
(x,x+) = E [I - F ]  

so tha t  the output i s  degraded by the factor  11 -c]. m e  

2 degradation i s  shown i n  Fig. (2-4) for  various values of E . 

(2-38) 

(2-39) 

effect  of th i s  

We note here 

tha t  a l l  signals x satisfying (2-37) have the same ef fec t  on probabili ty 

of e r ror .  This i s  t rue  whether the error  i s  i n  the  f i l t e r  or i n  the  

s ignal .  (3 1 

2.7 Equal Energy Orthogonal Signals, Mismatched Signals 

For the case of detecting the presence of e i ther  of two equal energy 

orthogonal signals, the previous statement i s  no longer t rue  

receiver fo r  t h i s  case i s  well known and is shown i n  Fig. (2-3). 

The optimum 

Fig* 2-3 
Optimum Receiver fo r  Orthogonal Signals 

(3) For the on-off case, since the threshold i s  se t  at  one half  the expected 
signal energy, par t  of t he  degradation i n  probabili ty of e r ror  shown i n  
the curves ds due t o  the incorrect threshold se t t ing .  For the range of 
mismatch error considered, t h i s  error  i s  negligible compared t o  the 
mismatch error.  
a l w a y s  zero (when the signals have equal energy) 

For the other two cases considered, the threshold i s  

1 
1 
I 
I 
I 
I 
I 
1 
I 
1 
1 
1 
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1 
I 
1 
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2 e =0.1 

. I I 1 1 1 1 1 1 1 1 

1 2 3 4 5 
\. 

Fig. 2-4 
Probability of Error for Mismatched Signals or 

Mismatched Filters; On-Off Case. 
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If the  orthogonal signals x* and y* are matched perfect ly  t o  t h e i r  f i l t e r s ,  

then the signal component of the output i s  E i f  x, i s  present, and -E i f  y* 

i s  present. 

We now assume tha t  the f i l ters are perfect ly  matched t o  the intended 

signals x+ and y*, but t ha t  the actual signals x and y are different  from 

x+ and y,; i n  particular t o  maintain symmetry, we require 

In  t h i s  case, there are two sources of error ;  the error  due t o  the 

diminished output of the  f i l t e r  matched t o  x* caused by the mismatch of 

x and x*, and the error  due t o  the  fac t  t h a t - x  and y*may no longer be 

orthogonal, and the  output of the f i l t e r  matched t o  y* due t o  x effectively 

subtracts from the t o t a l  output. 

more significant for  the "worst case" conditions. 

This l a t t e r  error  t u r n s  out t o  be the 

The degradation due t o  the  mismatch of x and x* i s  given by (2-39). 

The The output of the f i l t e r  matched t o  y* due t o  x i s  given by (x,y*) 

problem then becomes: 

f ind (x,y*). The functions x* 

and y* are completely a rb i t ra ry  except t ha t  they are orthogonal and are-  

square integrable. 

i s  square integrable and i s  "close" t o  x*. 

(x,y*) has the  largest  possible value. 

Given (2-40) a.tid the  condition tha t  (x,y,) = 0, 

There is, of course, no unique solution. 

The function x is  constrained only by the f ac t  tha t  i s  

The worst case a r i ses  when 

-We now show tha t  i f  

2 2  2 
IIx*II = I I Y * I I  = I I x I I  =I, IIx*-xII " E  = I I y * - y ( I  

I 
1 
I 
1 
I 
1 
I 
I 

I 
I 
1 



1 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

-25- 

then 

(2-41) 

That is, a l l  the signals and fi l ters have equal energy; the actual signals 

(x and y) differ from the intended signals (x* and y*) and have the same 

magnitude of error; the  signals x* and y* axe-orthogonal. 

t ha t  under these conditions, the 1argest"possible output of the f i l t e r  

matched t o  y* (or x*) due t o  signal x (or y) is given by (x,y*) 5 E $1- -4 - 
To show-this, We first choose a set of f'unctions F = [f,; f2, ...] 

This can 

We wan t  t o  show 

2 
E: 

which is complete i n  the space of which x, y, x* axe members. 

always be done, since t h i s  space is 4' and is known t o  be separable. 

We now form F' = [x,, y*, fl, f2, . ..] by adjoining x* and y* t o  F. 

is s t i l l  complete 

where we set fil = x* and fi2 = y*. 

t e r n  of the fits, i i e .  

F' 

F o ? ~  fi = [a,, $2, a3, . . .] by o r t l i o n o d i z i n g  the set F' 

Since (0 i s  complete we may expand x i n  

i=1 

i n  the sense tha t  

2 
l l x l 1 2 =  1 a i 

i=l 

and the a. are given by a = (x, 8,). 
1 i 

Hence 2 a = 1. N o w 1 1 ~ 1 1 ~ =  2 i 
i=l 

2 < 1  a, 1 + a 2  
2 

or a < 2 -  

(2-42) 

(2-43) 

(2-44) 

(2-45) 
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Since x* = fi,, and y* = fi2, we have that  

a 1 = (x,x*) and (y,,x) = a2. 

2 
E From,(2-39), (x,x*) = 1 - - so tha t  

(2-46) 

For t h i s  "worst case", the output of the system i s  degraded by the 

factor 

p = ( l - - - e  E 2 $7). 
Recall now tha t  from Eq. (2-40), we are maintaining symmetry so tha t  

(3-38) holds for  e2 - < 2 -J2, so tha t  0 5 p 5 1. 

factor i n  (2-48) i n  the second term due t o  the non-orthogonality of x and y 

The dominant degrading 
* 

* 
(or y and x ) since 

The degradation i n  performance of an optimum receiver designed for  

reception of equal energy, equally l ike ly  orthogonal signals for t h i s  

worst case condition i s  shown i n  Fig.(2-5). In  Fig.(2-8), the r a t e  of 

2 decrease i n  performance vs. E 

OP error .  

i s  shown fo r  a given i n i t i a l  probabili ty 

It i s  interesting t o  compare a "poor equal energy orthogonal system 

with a "good" on-off system. 

e2 = 0.08, for the "worst case" condition has the same performance as a 

perfect on-off system. 

An equal energy orthogonal signal system with 

2 In Fig (2-8) i s  a lso shown the r a t e  of decrease i n  performance vs E 

for an on-off system. 

with the same error have the  same performance. 

Here we have no "worst case" conditions as a l l  signals 
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, 

1 2 3 4 5 

F O  

M g *  2-5 

Probability of Error for Mismatched Blgnsls 

and Ideal Filters; EqW Energy Qrthogonil 

signals (Woret Case) 
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Here we are  considering the case where the signals and t h e i r  f i l t e rs  a re  

mismatched i n  the same manner so tha t  E If c2 = 2 - J2, x = y 

or x = -y and the factor p becomes zero, yielding probabili ty of error  of 

0.5. For e2 > 2 - $2 we have the s i tua t ion  of each signal "looking more 

l i k e  the other's mtched f i l t e r "  so t ha t  the probabili ty of e r ror  i s  greater 

than one ha l f .  

2 - < 2 - $2. 

2.8 Equal Energy Orthogonal Signals: Mismatched F i l t e r s  

Although a t  first glance it might seem tha t  considering perfect  f i l t e r s  

and mismatched signals i s  the same as the case of perfect signals and 

mismatched f i l t e r s .  

the conclusion tha t  by building matched f i l t e r s  nearly orthogonal but 

with (x,y*) < 0 and (y,x,) < 0, one could improve performance (lower the 

This of course i s  not t rue  as one would then be l ed  t o  

probabilify of e r ror ) .  

t he  matched f i l t e r  receiver minimizes probabili ty of e r ror .  

This i s  natural ly  fa lse ,  as fo r  a given signal, 

The difference i s  due t o  the  variance of the noise samgle a t  t = T which 

i s  given by 

o2 = No L T h 2 ( t )  d t  

where 

h ( t )  = x*(T-t) - y,(T-t)* 

(2-53) 

(2-54) 

(2-55) 

If the f i l t e r s  a r e  perfect,  (x*, y*) = 0 and o2 = 2EN0. Hence 

regardless of the character of the s i g n a ,  the variance of the  noise 

sample i s  the  same as t ha t  fo r  the  idea l  system, but the  s ignal  component 

of the sample may be increased by having (x,y*) and (y,x,) negative. 

1 
I 
1 
E 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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Considering the best possible s i tua t ion  where the signals a re  perfect 

and the  f i l ters are negatively "correlated", it t u r n s  out t ha t  the increase 

i n  the  signa3 component of the sample is  exactly of fse t  by the  increased 

variance of the noise sample. Also i f  the f i l t e r s  have equal posit ive 

correlation with the signals, and the  signals have the  la rges t  positve 

correlation allowable, then again, the decrease i n  one s ignal  component of 

the output sample i s  exactly offset  by the decrease i n  the  variance of the 

noise sample. 

For anti-podal signals (i .e.  x = -y), the  idea l  performance is  be t t e r  

than the idea l  "on-off" system (by 6 db) and is  be t t e r  than the idea l  

"orthogonal" system by 3 db. 

whose output i s  sampled a t  t = T and i f  greater than zero announces x, i f  

l e s s  than zero, -x. Here the variance of the noise remains the same, and 

the  s ignal  component of the sample can only be decreased by the factor  

The system consists of a f i i t e r  matched t o  x 

€ (1 - - ) -  The ef fec t  on probabili ty of error  fo r  t h i s  case is  shown 2 

i n  Fig. (2-7) where some of the curves for  the  other two cases a re  given 

fo r  comparison. In  a l l  of the curves 0 - < c 2  < 0.25. 

The curves i n  Fig. (2-7) showing the decrease i n  performance as a 

function of c2 for  a given S/N =dE/2N indicates t h a t  the  binary orthogonal 

system is a poten t ia l ly  "over sensitive" system. 

tha t  these curves are fo r  the worst case. 

0 

It should be kept i n  mind 

I n  contrast t o  the on-off and anti-podal systems where only the magnitude 
2 2  of the e r ror  a f f ec t s  the performance, i . e .  a l l  signals x such tha t  I I x-x* I I = E 

have the same effect  on probabili ty of error,  the orthogonal system is  

sensi t ive t o  the character of the error .  

degrade, or leave unaffected the probabi l i ty  of error .  Also, fo r  the on-off 

and anti-podal systems, it makes no difference whether the e r ror  is i n  the  

. 

The mismatch of signals may improve, 



-30- 

f i l t e r  or i n  the  signals. This i s  not t rue  for  the  orthogonal system. 

For the orthogonal system we now examine the  "worst case" fo r  perfect 

signals and mismatched f i l t e r s  which i s  considerably different  from the 

s i tua t ion  of perfect f i l t e r s  and mismatched signals.  As was  noted before, 

the difference a r i ses  i n  the variance of the noise i n  the two cases. If 

signal x i s  sent, the signal component of the output at t = T i s  

E[(x,x*) - (x,y,)] where E i s  the energy of each signal, and i f  signal-y 

i s  sen€, the signal component i s  E[-(y,y,) + (y ,~ , ) ] .  

noise sample i s  i n  both cases given by 2EN [ l - x g i ]  = CJ . 
substi tution and change of variable, we f ind the probabili ty of e r ror  i s  given 

The variance of the  
2 By straightforward 

0 

and fo r  symmetry we require (x,y,) = (y,x,). 

Let 

Y =  

We now show tha t  i f  

2 I I x-x* I I = 1 I Y-Y* 

(2-56) 

(2-57) 

- -  

Ix,II = I I y * I I  = I I x I I  = I I y I I  =1, ( x , y ) = O  

I '-= e2 - < 2 - 4-2, and (x,y,) = (y,x,), t ha t  

(2-58) 

$2 We proceed now as before except t ha t  here (x,y) = 0, and we s e t  x = fl1, y = 

For simplicity of notation, l e t  (x,x*) = (y,y,) = CY, and (x,y*) = (y,x*) = 8. 

I 
I 
I 
I 
I 
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1 
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I 
1 
I 

Then 

1 
I 
I 
I 
I 
I 
1 

(2-59) 

Note that the function x* and y* are  completely arbitrary; we know 

only t h a t  (x,x*) = (y,y,) = a-and (xiy,) = (y,x,) = 8. We have 

(2-61) 

and from the  Schwartz inequality, 

OD m 

Then 

(X*,Y*> 2 rn - 

and (X*,Y* ) < 1 - ( a - B )  - 

- r 2  + e211 
- .  

= (a + s12 - 1 
2 

Substi tuting (2-64) i n t o  (2-57), we have 

(2-64) 

but & ( e )  1, so t ha t  probability of e r ror  cannot be decreased by f i l t e r  

mi-tch 
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Recall now that i n  addition t o  requiring (x,x*) = (y,y,) = 01 (for 
1 1- symmetry) we require 01 > - t o  avoid having Pe > 5-  Since 1-1 x* I I = I I y* I I = 1, 

2 2  J2 1 

different ia t ing $ with respect t o  f3, and f ind 6 such tha t  

+ / 3  <1, andsinceCY> - ,  I f31  <a. 
4-2 

We seek the minimum of f ( f3)  over all f3 ( i . e .  no constraints) by 

*= 0. If 

1 > 0, then provides a minimum. We must now show that 6 i s  
df3' I f3 = 6 

1 permissible, i .e .  (2 + b2 < 1 for  a > ,--- , and tha t  the extreme values of - 
42 

f3; P, = n, 8, ='- provide values of + t ha t  are  greater than t(8). 
We find tha t  

'3 

;= 1 - d ;  
a 

$(6) =J22 - 1 

and indeed 

- 
1 

or &+ 5 5 3 for  a > - - $2 

also 

so t ha t  6 l i es  i n  the constraint se t :  Thus 

(2-66) 

(2-67) 

(2-68) 

(2-72) 

the  l e f t  hand s ide of (2-71) represents the worst qase degradation caused 

by f i l t e r  mismatch e r ror .  It i s  easy t o  show tha t  
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Fig* 2-7 
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(2-73) 

and thus the orthogonal signal system is less sensitive to filter mismatch 

error (for perfect signals) than to signal mismatch error (for perfect filters). 

This is indicated in Figures (2-6), (2-7) and (2-8). 

2.9 su~lnaary of Matched Filter Approximation 

We have shown here the effect of signal and filter mismatch error on the 

performance (probability of error) of three matched filter receivers. 

"on-off" and anti-podal cases, it was found that only the magnitude (not the 

character) of the error influenced the performance. Moreover, for these two 

cases, it makes no difference whether the error is due to the fact that the 

actual received signal is not the same as the intended signal, or whether the 

filter is not quite matched to the received signal. 

approximate signal or filter is of no consequence. 

For the 

The waveform of the 

The equal energy orthogonal 

signal case is more interesting. 

is important. 

give upper and lower bounds on the performance. In contkast to the other two 

cases, where mismatch error always causes degradation in performance, a given 

mismatch error may leave performance unchanged. 

(in the signal or in the filter) makes a considerable difference in the 

performance of the system. 

Here the character or waveform of the error 

Given only the magnitude of the mismatch error, one can only 

Also the location of the error 

The decrease in performance when the filters are 

in error is less rapid than for the same error in the eignal (comparing worst 

cases). 

Orthogonal Signal System is potentially the most sensitive to mismatch error, 

and is potentially l o s s  sensitive to filter mismatch them to signal mismatch. 

Signal mismatch error sometimes occurs due to waveform distortion caused 

by the channel, and in general, orthogonal transmitted signals do not result 

in orthogonal received signals. Some aspects of this problem are considered 

in the next chapter. 

One would infer from these results that of the three systems, the 

I 



-37- 

Chapter 3 

WAVEFORM CONSTRUCTION 

3.1 Introduction: 

When communication signals are transmitted through a channel, the wave- 

form of the output s ignal  will, i n  general, d i f f e r  from the  waveform of the 

input signal. I n  par t icular ,  orthogonal input signals do not, i n  general, 

produce orthogonal output signah. Moreover, we cannot usually write an 

expression for  the  impulse response of the  channel and determine analyt ical ly  

the e f f ec t  of the channel on the transmitted signals. I n  t h i s  chapter we 

develop techniques t h a t  allow construction of a set of transmitted signals 

from an arb i t ra ry  set of basis f'unctions, so t h a t  the set of output s ignals  

have a prescribed inner product matrix. It is required only that  the channel 

be l i nea r  and that the inner products of the output signals can be measured 

* 
- 

(by any convenient method such as time sampling.) 

3.2 Waveform Construction 

By "waveform construction" is meant here the formulation of a waveform 

by a l inea r  canbination of other waveforms. That is, 

i=l 

* 
The inner product def ini t ion used for  the  output s ignals  need not be 
the same as t h a t  used for  the input signals. 

. 
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where the gi a re  arbi t rary r e a l  f'unctions and the a 

i s  not being approximated by t h i s  l inear  combination; it i s  defined by it. 

are  r e a l  numbers. f ( t )  i 

The approximation problem is  considered i n  the  next chapter. 

Here the waveform of f ( t )  i . e .  "what f ( t )  looks l ike"  i s  considered 

t o  be of l i t t l e  importance, and the g i t s  may be selected on the basis of t h e i r  

case of generation, e t c .  

It w i l l  be found t o  be convenient i f  i n  eq. (3-l), the  g i t s  are 

orthonormal. How or  where one finds a s e t  of orthonormal signals provides 

a s ta r t ing  point for t h i s  discussion. One might piCk a set of functions 

tha t  i s  known t o  be orthogonal such as 

(3-2) 
,T  

where as before, we define (gn, s) = gn( t )  g,(t) d t .  That is, i f  g ( t )  
0 

is  given as 

g ( t )  = s in  Y t (3-3) 

and i f  one asks fo r  some h ( t )  such that (h, g) = 0, a "natural" choice 

would be another sine wave with frequency an integer multiple of 9 If 

the  given f'unction i s  say 

M 
g ( t )  = I Jl(l.3t) I 3/2 sgn[ 1 1: n s in  Et] T I j t ( t -T )  I '/* 

n=l  
(3-4) 

Then the choice of an h ( t )  such tha t  (h, g) = 0 becomes somewhat more 

d i f f i cu l t .  

differentiable f'unction f such tha t  f (0 )  = f(T) = 0, 

d Here i f  h ( t )  = xt g ( t ) ,  then (h, g )  = 0 since fo r  any integrable, 

T 
f ( t )  f ( t )  d t  = $ f2  I = $ [f(O) - f(T)] = 0 (3-5) 



-39- 

If the given f’unction i s  not recognized as belonging t o  some known set of 

orthogonal Functions, or doesn’t s a t i s fy  the consitions for  some integration 

t r i c k  such as the above, the most straightforward way of constructing h so 

that  (h, g) = 0 i s  the Gram-Schmidt orthonormalization process [8] which we 

now explain. It was remarked above tha t  eq. (3-1) would be more convenient 

i f  the  N fits were orthonormal. 

forming N orthonormal functions from a set of N l inear  independent f’unctions. 

The Gram-Schmidt process i s  a method of 

. . . f ) i s  said t o  be l i nea r ly  independent i f  the N A s e t  of Functions {fly f2, 
N 

L . L A  

i=l 
at? i n  other vords nalie of 

= c2= ... = c = 0. N re la t ion  7 c4 f , ( t )  = 0 fo r  every t implies that c 

the  I fils be eqres sed  as  

of the ( E - 1 )  other f i ts-  

independent functions f I , 
is constructed, beginning 

Consider now the  function 

The method is  as follows: Given the  l i nea r ly  

... fN, a set of orthonormal functions ‘qyv2 ... % 
f 

f2’ = f2 - 1%. Here 5 can be so chosen tha t  

t he  function f2? is  orthogonal t o  ‘9- 
Consequently f2t = f2  - (f2, ‘9) ‘ ~ 1 .  

Such i s  the case fo r  Al = (f2, %). 

If now we s e t  

f2t  
(3-6) 

Then 

1 1 %  l l  = 1, 

and (cp,, (4) = 0 

N e x t ,  form the function 

(3-7) 
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which i s  orthogonal t o  the  f’unctions ~ 9 ,  cp2. Now s e t  

fll 

and 

(3-9) 

and 
9 1  

The se t  of functions ‘9, . . . % is  orthonormal. 

fo r  the  function (4, i s  given by 

1 
‘ % =  

JFkFk-l 

Fo 1 Fk = F(fl, 

where 

m - 9  fk) K = 

An expl ic i t  expression 

... 

... 

f2  

. . . . . .  

... 

(3-15) 
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and is  called G r a m s  determinant of the  set of f’unctions fl, - . e  fk- 

The relationship between the 9’s and f’s i s  seen t o  be of the form 

v2 = a21 fl + &22 f2  
. .  0 . . . 0  

or i n  matrix notation, 

9 = A F  

where 

@ = [  :] 
and 

0 0 . e o  0 

a 0 0 22 

F =  [;] 

(3-16) 

(3-17) 

(3-19) 

(3-20) 

It is seen then tha t  given any integrable function on [0, TI there 

a re  in f in i t e ly  many functions that are orthogonal t o  fi, as there  are 

i n f i n i t e l y  many functions which MY be selected as f2 i n  the  Gram-Schmidt 

process 
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Given a se t  of N functions, the labeling (cal l ing one of the  functions 

fl, another f2, e t c . )  may be done i n  Nf different ways since there  a re  N 

choices for  fl, N-1 choices for  f2  having chosen fl, e tc .  

there are  N! different 0's t ha t  may be constructed from a s e t  of N l i nea r ly  

This means tha t  

independent functions, although they span the same space. 

3-3 Signals for  M-ary Systems 

If two known signals, x1 and x2, are received i n  the presence of 

white gaussian noise, it i s  well known tha t  the s ignal  selection problem 

reduces t o  choosing x1 = -x2 i n  order t o  minimize probabili ty of e r ror .  

the receiver must decide which one of M possible signals w a s  sent, it has 

been conjectured [g], but only recently proved [lo], t ha t  one should choose 

a s e t  of signals having the largest  negative pairwise correlation (or inner- 

product) * For a set of N signals having uni t  norm ( or  energy), the la rges t  

negative 

If 

pairwise correlation i s  given by 

P =  

This i s  shown simply 

norm and (fi,f ) = p 3 

-1 
N-1 
- .  (3-21) 

by noting tha t  i f  fl, .. fN are  signals having uni t  

i # j then 

N 

i=1 i=1 

= N + (I?-N) p - > 0 

-1 o r p l  - N-1 

(3-22) 

(3-23) 

(3-24) 

I 
I 
I 
I 
t 
I 
I 
1 

1 
I 
1 
I 
I 
1 
1 
1 
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4 3  - 
N 
P 

Equality holds here if and only i f  ) 
L 

fi = 0. Note t h a t  equality here 

implies t ha t  fl, , fN are linearGIdependent ., 

We now show tha t  fi is the only l inear  combination of the fi t ha t  

-1 i=l 
vanishes i f  the  f i  have unit norm and p = ( f i , f j )  = N - ~  a Suppose tha t  

Then for any f 1 < k  < N, (fk, 
-1 - k’ - f hi .Pi(*) = 0 and p = - N-1 * 

i=l i=l 
F 

f = l  ifk 

N 

N-1  
1 =a,&+-]-- N - 1  

i=l 

i=1 

Since L , s  is zero for  a l l  Is, a l l  t h e  bqks are equa,, so tha t  L e  only l i nea r  
N 

combination of the f .  t o  vanish is f .  (or a scalor multiple thereof) .  I n  
i=1 

other words, i f  N-1 signals fi9 a ,  fNel of uni t  norm are constructed having 
1 3 

the only fN having the  property tha t  (fN, fi)  = gl -l f=l, e.o,N-l ( 5 9  f$ = El 9 
-1 

is 

1 I l f ,  1 1 2  + 

i=l 

1 is shown simply 

(3-30) 

1 
M-1 ‘J) = - - and using the fac t  t ha t  I I fi I I = 1 and (fi, 
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= (N-1) 1 + { [  N-1 1 (3-31) 2 2 -1 we have 1 1  fN 1 1  

The fact that the negative of the sum of N-1 signals of unit norm having 

w i l l  -1 -1 p = N-1 is the only signal fN having the property that (fN, 

be made use of in a construction procedure developed later in this chapter. 

It has been correctly pointed out, [12], that equality in eq. (3-23) 

- [N-11) [ zl 1 = 1 

fi) = N-1 

can be achieved if and o w  the number of signals (N) is at least one greater 

than the dimensionality of the signal space. If If f, are considered to be 
.L 

constructed from M orthonormal signals (pi: 

i=l 
. . . . . . . . 

M 
F 

The dimensionality of the signal space is M (if no %i - - 

A technique of constructing a set of signals having 

0 for every k). 

this minimum equal 

correlation property (called Regular-simplex Codes) is described by Stutt [13] . 
Another method is presented at the end of this chapter. 

are considered to be vectors whose camponents are time samples of the continuous 

waveforms. 

In [U], the signals 

I 
I This is an unnecessary restriction, and his method applies equally 

well to the more generd 

for the coordinates then 

fits which are staircase 

functions and the 'pi are 

formulation 

the vi may be taken as non-overlapping pulses, producing 
functions or the f, may be assumed to be bandlimited 

If (eq. 3-24). If time samples are used 

sinc 

are known to have the form of 

above two special cases, (fk, 

f's. 
, 

.L 

sin x functions ('9 = - ). In general; if the fi 

eq. 3-24, &ki is given by (fk, vi ).  
X 

For the 

'pi) is proportional to the time samples of the 
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3.4 Linear F i l te r ing  of Constructed Signals 

Unless a s e t  of signals with a prescribed correlation or  inner product 

matrix is available t o  the signal designer, it i s  h i s  task t o  build the 

desired set. The construction of an orthogonal set of signals from a 

l inear ly  independent set has been i l l u s t r a t e d  previously with the Gram- 

Schmidt Or5hnormalization Process. One construction procedure fo r  generating 

a so called regular simplex code, as metioned before, has been given by Stut t ;  

we give another i n  t h i s  chapter. As w a s  noted before, r e s t r i c t ion  t o  t h e  

sampling is not necessary, and Stu t t ' s  construction procedure holds for  the  

more general formulation given ear l ier ,  where we write 

(3-32) 

and the vi's are a rb i t ra ry  orthonormal f'unctions. 

If these signals a re  t o  be used i n  the usual model of a communication 

channel, where the transmitted and the received waveforms are the same, then 

the  choice of the vi's is  immaterial. 

only on the inner product matrix of the s e t  of signals, and as i s  shown by 

The performance of the system depends 

Balak [lo], the  probabili ty of error is minimized i f  the set of signals is 

a regular shxplex code For N f a i r l y  large (say 10 or more ), orthogonal 

signals perform about as w e l l  and a re  apparently considerably easier  t o  

generate. 

I n  eq. (3-32) the 'pf are  also constructed signals unless they are 

given as being orthonormal. I n  other words the vi's a re  constructed from a 
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linearly independent set of fUnctions gl, g2 %- In matrix notation, 
we write eq. (3-32) as 

Then writing 

where 

f = A @  

Q - B G  

F - A B G  

T F = [fl, f2 ... fM] 
T 

@ =  [cq, ql2 * * *  "I 
rn 

(3-33 1 

(3-34) 

(3-35 1 

(3-36) 

(3-37) 

(3-38) 

A is an N x M matrix, and B is an N x N matrix. In eq. (3-32) N has 

been called the dimensionality of the signals fie A detailed discussion of 

dimensionality is taken up in the next chapter; it suffices here to note that 

one must speak of the dimensionality of a set of f'unctions, not the dimensionality 

of a single function. 

one dimensional, regardless of how it may be decomposed. That is, the fact 

that a function f may be written as 

A single function makes up a one point set and is 

n sin(t - - 23 

1 a 

N 
f(t) = 1 f(g 1 n t - -  (3-39) 

does not make f and N dimensional signal. The dimensionality, (as defined 

in Chapter V) of the set of f's in eq. (3-32), would be the smaller of M and N. 

As was stated at the beginning of this section, no account is usually 

taken of the distortion of the signal waveshape that may take place during 

the passage from transmitter to receiver. 

as in eq. (3-32) may be done for purposes of construction, or for ease of 

Decomposition of a set of signals 
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finding the  response of the  channel t o  the  constructed waveforms. 

If two transmitted signals are designed t o  be orthonormal, the received 

s ignals  i n  general no longer have t h i s  property. 

represented by i t s  impulse response h ( t ) .  

Let  the l i nea r  channel be 

and ‘92 are two orthonormal If 

transmitted signals, the 

q(t> = 

received signals are  given by 

Following the  notation of Chap. 11, 

Now i f  

of the  

are  selected t o  be eigenfunctions corresponding ‘9’ ‘p2 

in tegra l  equation 

A =L H(7,B) cp(B) ds 

(3-42) 

t o  d i s t inc t  A ’ s  

(3-43) 

we have 

(3-44) 

since the eigenf’unctions of eq. (3-43) are orthogonal. 

condition for  a s e t  of received signals t o  be orthogonal when t h e i r  corresponding 

transmitted signals are orthogonal, i s  tha t  the transmitted signals satisfsr 

That is, a suf f ic ien t  
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eq. (3-43). 

signals t o  be '9 = x, 'p2 = &, wi th  x(0) = x(T). 

since the channel is l inear  h[x] = y implies h [ i ]  = $, so tha t  if 

That it i s  not necessary i s  seen by considering the transmitted 

Then (cq, 'p2) = 0, and 

y(0) = y(T) = 0, (y, i) = 0 .  Another, l e s s  a r t i f i c i a l ,  example appears 

later i n  the chapter. 

3.5 Construction of Transmitted Signals 

Here the transmitted (input) signals are  passed through a l i nea r  

channel h. If the input signals have a cer ta in  inner product matrix (e.g. 

a regular simplex-code), the output (received) signals w i l l  not i n  general 

have the same inner product matrix. 

relationship between these two matrices for  a given channel. 

It i s  of in te res t  t o  determine the  

In  par t icular ,  

we give method for constructing a s e t  of input signals so that the se t  of 

output signals has a prescribed inner product matrix. As a special  case 

of this method, a very simple procedure for  constructing regular simplex 

codes i s  presented. 

Let the s e t  of constructed input signals be given by 

'1 = f a l i  'pi 
i=1 

(3-45 1 

where the  pits are a rb i t ra ry  orthonormal signals.  C a l l  Bi t he  response of 

the l inear  channelh t o  vi, and gi the response of h t o  f 

output s ignsls  i s  then given by 

The s e t  of i' 



Let 

The inner product matrix of the  q's  m y  be written as 

i s  the  generator matrix for the f 's  (F = AQ) and 

B, = 

...... 

...I.. 

is the  inner product matrix of the 8 's .  
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The inner product matrix of the set of input signals is given by 

F, = AA (3-53) T 

and the condition for G* = KF,, i.e., the inner product matrix of the 

output signals is proportional to the inner product matrix of the input 

signals is that 

T AB*AT = KAA = F, (3-54) 

or B, = KI (3-55) 

where I is the identity matrix, and K is an arbitrary constant. 

channel is anything but an attenuator, then the two matirces are not the 

same, and it is of interest to determine a method for constructing the input 

signals so that the output signals have a prescribed inner product matrix. 

If the 

We make use of the fact (theorem 1, p-126 [32]) that a non-singular 

symmetric matrif may be uniquely deocmposed into the product of a lower 

triangular matrix and its transpose. That is, if X is an (NXN) symmetric 

matrix, it may be mitten as ~ 

rn x = T T ~  

where 

T =  

c 

51 0 

t21 t22 

tNl. tN2 - 

- 
. . . o  

. o . .  

. . 't" 
- 

(3-56) 

(3-57) 

and T is unique. We require here that A be square and non-singular. 

(3-58) 
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where a and B are lower triangular matrices. Then Eq. (3-50) becomes 

T T T  = @ P A  (3-59) 

We now identify and @. That is, we set 

Equation (3-62) assumes a particlarly simple form if the c@s are selected 

according to Eq. (3-43). As was noted previously, the 8's are then orthogonal, 

with 

(Si> ej! = Ai Eij 

and the inner product matrix of the 8's is given by 

(3-64) B, = 

Then 

B =  (3-65) 

The inverse of f3 is given by 

I" 
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A procedure for finding the triangular decomposition of a symmetric 

matrix is given on page 127 of [ 3 2 ] .  The elements of the lower triangular 

matrix is calculated as follows: If the symmetric matrix G has elements 

gik - - $ci, the elements aik (aik = 0 for k > i) of the lower triangular matrix 

are computed in the following fashion. 

First column: a = dgll 11 

2nd column : a2* = J(g22 - 2> 

2 2 3rd column : 33 = - "SI - q2 
(3-67) 

2 2 2 4th column : a44 = - abl - a42 - a43 

etc. 

3.6 A Construction Procedure for Regular Simplex Codes 

Here it is desired to construct a set of N f'unctions Ifi, - .  fN] 
- 1  i = j  so that 
i . .  

If the f's are generated by a set of orthonormal functions, 

F = A@ 

(3-68) 

(3-69) 
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Then as before, the inner product matrix of the f's is given by 

(3-70) T 
F F ~  = F* = Ufi, fj,l = AA 

Here we simply identim A with the lower left triangular matrix of the 

triangular decomposition of [ (fi, fj)] according to the procedure in Eq. (3-67) 

However, in this case, the matrix F, is singular since its determinant 

must vanish as the f's are linearly dependent. 

formal difficulty in dealing with a singular matrix, and also to simplim 

To avoid any possible 

the construction procedure we use the non-singular [N-11 by [N-l] matrix 

whose off-diagonal elements are equal to 

into A '  AIT where A '  is a IN-11 by [N-11 lower triangular matrix. 

generator matrix A for which AA yields the desired regular simplex code 

is found by adjoining to A '  a row whose elements are equal to the negative 

This matrix is then factored -1 zl. 
The 

T 

of the sum of the elements in the respective columns. That this is correct 

is assured by the fact noted earlier that if fl, .. fN-l have unit norm and 
-1 -1 
N-1' (fi, fj' = - the only f'unction fN having the property that (f,, fi) = zl 

is 

- fN - - 

The above factorization 

N-1 1 fi* 
i=l 

procedure is of course not the only one that can 

be used, but it leads to perhaps the simplest computational procedure. This 

is especially true when the transmitted signals pass through a channel which 

changes their waveshape- 

We now give some illustrative examples of the foregoing material. 

above techniques do not require knowledge of the impulse response (or sane 

equivalent characterization) of the channel. 

response to the set of input signals can be measured. 

the channel is taken to be an RC lowpass circuit to permit analytic computation. 

The 

We only require that the channel's 

In the first example, 



-54- 

Example 4-1: 

s e t  of output signals: 

Construction of input signal s e t  t o  produce an orthonormal 

Specifically i n  t h i s  example, we construct two input signals, fl and f2, 

so tha t  the  output signals, g1 and g2 are  orthonormal. 

taken t o  be an RC c i r cu i t  with t ransfer  f'unction H(s) = s+4 

of the  cp's is  arbitrary,  but we take 

Here the channel i s  

The waveform 

'4 = J2 E-t 
(3-71) 

-t 'p2 = 2[3E st - 2€ ] 

for  computational convenience. 

'pl and cp2 respectively, are given by 

Then el and 62 (the channel's response t o  

Here the inner product, x and y, (x,y) i s  taken t o  be 

We then f ind that 

J 
0 

4 
'5 

- 2J2 
15 

2 - -"I 3 

(3-72) 

(3-73) 

(3-74) 

II 
1 
I 
1 
1 
I 
I 
I 
I 
1 
1 
1 
1 
I 
I 
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I 
1 
I 
I 
I 
I 
1 
I 

and 

B =  

4 
5 
- 0 

- $10 1 3 s  - 
15 

Since we w a n t  (gi, gj) = €jij- 

and 

a = C  

so t ha t  

and 

' p  
2 7  ;I. 

(3-75) 

(3-76) 

(3-77) 

(3-78) 

(3-79) 

The operation i s  indicated schematically and p i c to r i a l ly  i n  Figures 

(3-1) and (3-2). 

Example 3-2. 

signals which i s  a regular simplex code. 

Construction o f  input signal s e t  t o  produce a s e t  of input 

We take the same channel, and the same set of 9 ' s  as i n  Example (3-1)) 

and construct three input signals so t ha t  the three output signals have the 

inner product matrix. 
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V J5 fl 
1 d 

I 

a 

f 
v2 3 $5 

V 5 7  

Fig. 3-1 

Block Diagram of the Transmitter i n  Example 

L .  /f2 y- 
fl 

Fig. 3-2 

Picorial  Diagram of the  Relations Between 
the Signals i n  Examples (3-1) 

f2  

L g1 
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1 
2 

i 

1 
2 

- -  

- -  1 I 
We make use of a previous resu l t  (eq. 3-28), t ha t  i f  a set of N - 1  normal 

f h c t i o n s  has the property 

i # j i, j = 1,; - N-1, (3 -81 
1 (fi, fj) = - - N - 1  

t he  function fN having the property that 

(3-82) 1 
(I” , fi> = - - 

N N - 1  
N - 1  

We then construct two input signals, f and f2, 1 fi 1 is given by f = - N 
i=l 

so t h a t  t h e i r  corresponding output signals, g1 and g2, have the property 

= -(gl + g2), and since the channel is ( g p  g,) = - 5’ ’ g3 By the above 

l inear ,  f = - (fl + f2) 3 

1 

1 G*=[ - 2 

fo r  which 
1 

d = [  - 1 2 

1 

1 
= [  - z  

We consider then 

1 
2 

- -  

1 

8 O I  

(3-83 1 

(3-84) 

(3-85 1 
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0 -347 
' 3  - 

+ 

Fig* 3-3 

<+ 
+ 

Block Diagram of the Transmitter in Example (3-3) 

* f2 

Fig. 3-4 

V v2 ,i.098 

Pictorial Diagram of the Relations between the 
signals in Example (3-2) 

I 
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A is found by adjoining to A' a third row whose elements are given 

by the negative of the sum of elements of the respective columns. !Chat is 

The operation is indicated schematically and pictorially in Figures (3-3) 

and (3-4). 

Ekample 3-3 

In the procedure given for construction a set of input signals so that 

the resulting output signals have a prescribed inner product matrix, it is 

not necessary that the inner product used for the input signals be the 

same as that for the output signals. That is, we may use for the 9's and 

f's the inner product 

0 

and for the 0's and g's the inner product 
m 

(X,Y), = S'' x(t) y(t) dt (3-89) 
0 

As an example we take '9 and cp to be as shown in Fig. , and the 2 
-t channel to be an RC circuit with impulse response h(t) = E . For the input 

signals, we, take 
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and fo r  the output signals, 

(3 -90  

the  f'unctions €Il and e2 are  sham i n  Fig. (3-53). The inner product matrix of 

the 8's using ( )2 is  found t o  be 

o 36788 

B =  [ 
0 1 0 

0.28382 
(3-92) 

Here the 8's t u r n  out t o  be orthogonal, so t ha t  p and f3-l are  diagonal. 

(3-94) 

If we desire (gi, g , )  = 6ij, then as before 

Since the 0's are orthogonal, t h i s  operation amounts t o  amplitude scaling of 

the  input signals so t ha t  the output signals a re  normal. 

If we require the output signals t o  be orthonormal on 0 5 t 5 1, we 

compute B = [ei, 9 ) 1:  
3 1  

1 o ~ 6 8 1  o 0489 

0 .om9 o .04625 
(3-96) 

(3-93) 
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and 

2.439 

A - f 3  = 

-1.623 5 - O 1  589 
(3-97) 

The input signals f and f are  shown i n  Fig. 3-5. 

The technique given above for finding a generator matrix A yields a 

Once t h i s  triangular matrix i s  found, many different 

1 2 

triangular matrix. 

decomposition may, of course, be found by multiplying A by an orthogonal 

matrix. 

Earlier in th is  chapter it vas ixsntimed t ha t  o m  nay zbaose t o  construct 

a set  of input signals f'rom another set because of the  ease of physically 

generating the basic signals. One can, of course, only obtain signals t ha t  

a r e  l i nea r  combinations of the basic signals.  For emmple, the  & p a l s  which 

produces maximum energy transfer (as i n  Chapter 111) may not l i e  i n  t h i s  c lass .  

We may look for an optimum signal i n  the class  of signals generated by the 

ba is ic  functions 3, 'p" i - e .  

I n  matrix notation we write 

f = A@ 

where A = [al a2 ... %] and 

.-[ :] 
(3-99) 

(3-100 
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2 t  

1 - 
2 

fl 

..- 
I - 1  
2 

*2 

Fig. 3-5 

Input aad Output Waveforms of t h e  
Signals in Example (3-2) 
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We wish to maximize 

JT2 0 
i-1 

2 

subject to the constraint tht 

T 
l(t) dt = f a 2 =  i 1 

0 i=l 

or in matrix notation, we seek 

T T v = m a x A B A  wlthAA = 1  

(3 -102 

which is given by the largest eigenvalue of B , and A is the eigenvector 

corresponding to the largest eigenvalue. 

For comparison, we take the cp's and the channel in example 3-3, and 

compare the 9 in eq. (3-103) with the best possible ratio found in Chapter 111. 

Example 3-4 1 
n 

Here we take (x,y), = (x,y), = J x(t) u(t) dt. We find 
0 

= 0.185 with corresponding eigenvector, Al and its largest eigenvalue, 

A = [.943, -3321. In Chapter 111 we found for this case that the maximum 
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r a t i o  of output energy t o  input energy was about 0.195, so tha t  the input 

signal shown i n  Fig. 3-6 is  about 95% as good a s  the optimum signal.  

I t  1 - .. 
z 

Input Signal 

Fig. 3- 6 

1 

Summary : 

In  t h i s  chapter, methods were developed for  constructing input 

signals from a set of a rb i t ra ry  waveforms so tha t  a f t e r  passing through 

an a rb i t ra ry  l inear  channel, the result ing output signals have a prescribed 

inner product matrix. The innner products used for  the input and output 

signals may be different .  
n 

It should be noted t h a t  for  the computation of (ei, e j )  - - 1 e i ( t )e j ( t )d t  

T it i s  not necessary t o  l i t e r a l l y  implement the integral  of the  product of 

Qi and 8 

and i s  used t o  f a c i l i t a t e  use i n  systems employing d i g i t a l  computers. 

sampling technique is, of course, an approximation. 

problems are considered i n  the next chapter. 

Time sampling of the output signals i s  the more common procedure J 
This 

Some approximation 

I 
I 
1 
I 
I 

I 
I 
I 
I 
I 
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Chapter 4 

WAVEFORM APPROXIMATION 

4.1 INTRODUCTION 

In the previous chapter we dealt with waveforms which were constructed 

by forming a linear combination of other waveforms. 

involved in the methods developed there except the inherent approximations of 

potentiometer settings, amplifier gains, etc., which are inherent in any 

physical implementation. 

of approximating an unknown signal by a finite sum of known signals. 

several adaptive communication systems, (e.g. Glazer [15], Janawitz and White 

[16]), the form of the received signal is estimated by finding its projection 

onto a known set of signals. 

is invariably corrupted by noise, but by making a sufficient number of 

observations, the effect of the noise may be made arbitrarily s m a l l .  

to be considered in such a scheme is the nmiber of coordinates necessary to 

obtain a sufficiently good estimate of the received signal, as in general the 

smaUer the number of required coordinates, the easier it is to obtain good 

estimates. It is of interest then to study the problem of efficient signal 

representation (approximation) and its implications in overall cammunications 

system design. 

more convenient to operate on some ordered N-tuple representation of the 

signals. mat is, the receiver performs discrete operations on a set of 

numbers representing the analog signal. 

time samples of the received waveforms. 

N-tuple representation is x = [%, x2, ., 5 1 ,  two receivers might be built; 

There was no approximation 

In this chapter we study some aspects of the problem 

In 

"he measurement of these coordinates (projections) 

A factor 

Even when the received waveforms are known, it is usually 

For example, the numbers may be the 

If the received signal is x, and its 
A 
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one operating on the analog signal x, and the other a discrete receiver 

operating on x. 

announced by each receiver must be the same. 

signal) may be reconstructed, the discrete receiver (operating on x) will 

n 

For the two receivers to be equivalent, the decisions 
A 

If by knowing x, x (the analog 
A 

necessarily make the decision as the analog receiver (operating on x). This 

however is not usually the case, and the discrete receiver is an approximation 

to the analog receiver. 

in the Bayes sense) for x, it is not, in general, optimum for the analog 

signal x unless x is completely characterized by x. 

choice of coordinates xl, ... , 5, then, determines the analog waveforms 
for which the discrete receiver is optimum. If the received signal is not 

completely characterized by x, one must assume that the representation is 

"close enough" so that the decisions made by the discrete receiver agree 

well with the decisions which would have been made by the optimum analog 

Although the discrete receiver may be optimum (say 
n 

n 
For a given N, the 

* 4 

receiver. For a given N, and a given set of transmitted signals, performance 

of the discrete receiver may be enhanced by proper selection of the coordinates 

so that the representation is as close as possible. 

In this chapter we attempt to make clear the implications and difficulties 

associated with the problem of finding "optimum" finite dimensional representations 

for given classes of signals. Although the intuitive idea of approximating 

"sufficiently well" any member of a given class of f'unctions by a finite 

linear combination of other functions seems reasonable enough, actually 

* 
By "completely characterized" is meyt that for two analog signals x(t), y(t) 
and their d' Crete repres ntations x = [x , . ., 31 , = [y,, 0 ,  YN] , the. 
quantitiesix2(t)dt, LJ(t)dt, I;(t)y(&)& mus be equal to their 

discrete counterparts 
i=1 f i=1 f 2 

yi ' I+1 t xiyi 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
1 
I 
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finding these "other functions" or even the largest error incurred by the 

approximation where the problem is precisely stated seems to be beyond our 

reach. 

approximating a finite set of signals by any lower dimensional subspace, 

thus allowing a quantitative ccmrparison of the efficiency with which 

different sets of signals (chosen e.g. for their simplicity) approximates 

the original finite set of signals. Of particular importance here is the 

development of error expressions. Due to the difficulty of actually finding 

best finite sets of approximating functions, of particular importance in this 

chapter is the development of remarkably simple error expressions for ex- 

ponential f'unction approximation. 

the smallest error incurred by approximating a function camposed of a finite 

(or infinite) number of exponential functions by an element of the subspace 

spanned by a finite number of other exponentials. 

expressions is such that rapid trial and error calculations may be made to 

obtain approximate values of the best exponents of the set of exponential 

appro ximants. 

coordinates used in conditional maximum likelihood estimation of signal 

waveforms 

In this chapter, we develop bounds on the largest error incurred by 

Here e-uact expressions ere Oeveloped for 

The form of these 

Finally, we examine the significance of the number of signal 

4.2 Models and Approximation 

In engineering problems we almost invariably work with mathematical models 

of physical systems rather than the actual systems. 

approximation problem. 

in the sense that the predicted performance (based on analysis of the model) 

agrees well, in some engineering sense, with the actual performance. It is a 

rare case when one can give a quantitative measure of the goodness of the 

Hence we deal with an 

We would like our model to approximate the actual system 
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approximation, since on one hand we have a mathematical model, and on the other 

a physical system. 

system, much less the exact effect of changes in these parameters on the system 

performance, so that a precise mathematical measure of the goodness of the 

approximation is impossible. 

linearity, band-limited signals, etc , allow us to make "reasonably accurate" 
predictions of the perfornance of the actual system, then they are justified; 

not because the noise does have gaussian statistics, the channel - is linear, the 

signals - are band-limited, etc., but rather that the end result is satisfactory. 

We do not usually know all the parameters of the physical 

If our assumptions of gaussian statistics, 

4.3 Mathematical Approximation Theory 

"he area of mathematics known as Approximation Theory as presented for 
I example in the books by Achieser [8], Jackson [17], Korovkin [18] and Golomb 

[lg] is a relatively new area; most of the work having been done since the 

turn of the century. It is currently a very active (and difficult) area of 

mathematical research. Only a very small portion of the problems and results 

from this area that are pertinent to the signal approximation problem will 

be discussed here. To avoid cluttering up the discussion, some of the 

definitions and theorems used here are collected in the appendix and are 

referred to by [AK] meaning the kth section of the appendix. 

The main problem in the theory of approximation according to Achieser can 

be stated as follows : 

F(P; A1 ... An) of the point P e f3 are defined within a point set f3 in a space 

of any number of dimensions Here F(P; 4. . . . A ) depends on a certain number 

of the paramekers A 

deviation (or distance) of the function F(P; A1 . . . An) from the function f(P) 
for a l l  P in f3 s h a l l  be a minimum." 

"Let us suppose that two functions f (P) and 

n 
It is required to so determine the parameters that the 1 

This problem is quite broaa and includes 



-69- 

8 
I 
I 
I 
1 
I 
I 
II 

those problems for which F i s  a nonlinear function of the parameters A 

metric [All may be used as  t he  measurement of the distance D[f,F] between f and F. 

and any i' 

Among the metric spaces, the so-called normed l inear  spaces [A21 are important 

t ion  theory. If x i s  an element of a normed l inear  space, i t s  
in 
distance from the origin i s  called the norm of x and i s  denoted by I I x I I . 
normed l inear  space is a metric space i f  we put D[x,y] = I I x-y I I . 

A 

For example, 

the  collection of a l l  continuous Punctions x on 0 < t  < T is  a normed l inear  

space if we take I I x I I e = max I x ( t )  I . Also any Lp space [A31 (p > 1) i s  a 

- -  
- 

normed l inear  

with the norm 

space i n  which the elements w e  functions x ( t )  on a < t -c b - -  
defined by 

The hmdamental Theorem of Approximation Theory i n  Normed Linear Spaces 

can be s ta ted as follows (Achieser [8]): 

l e t  gl, ' * * ,  43, be n l inear ly  independent elements of E. 

there exists numbers hl, . ., An for which the quantity 

Let E be a normed l inear  space, and 

Then given x E E 

a t t a ins  i t s  smallest value. 

Note that the norm is  not "tied down" t o  any part icular  distance measuring 

f'unction. 

I n  any approximation problem there arises two questions. 

exis t  a best approximant?" Second, "is it unique?" For the Tschebycheff 

problem, the above theorem says tha t  a best approximant exists. 

best approximant is  i n  general not unique (see [Ab] ) 

the c q u t a t i o n a l  d i f f icu l ty  of actually finding the hi, makes I I I I 
unattractive distance measuring function for  the  Signal Approximation Problem. 

If the norm i s  I I x 1 I c, t h i s  i s  the  so-called Tschebycheff problem. 

F i rs t ,  does there 

However, the 

This fact ,  coupled with 

an 
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If i n  a l i n e a r  space we can assign a number (x,y) for  every pair of 

elements x,y called the inner product of x and y [A51 and i f  we take 

I I x I I = (x,x)Z, we have what i s  known as  a normed l inear  inner product 
1 

space. 

reserve the  name Hilbert Space for  a complete [A61 normed l inear  inner 

This is  what Achieser c a l l s  a Hilbert Space, although some authors 

product space e 

If the approximation i s  i n  a Hilbert Space, we have the following 

f'undamental approximation theorem [8] 

Let  G be a subspace of the Hilbert space H and suppose tha t  x E H does 

not belong t o  G. 

shortest ,  then the vector x-y i s  orthogonal t o  any vector of G, i . e .  

If there ex is t s  i n  G a y whose distance from x is  the 

By using the r e su l t s  of t h i s  theorem, the function 

y = a  g + ... a g 1 1  n n  

which deviates leas t  from a given x can be presented expl ic i t ly  for the case 

where G i s  generated by the l inear ly  independent functions gl, .-. gn. 

case [8] 

I n  t h i s  

G(x,gl, ' 0 ,  gn) 

G(gp * 9  gn> 
min 1 1 x - i ~  gl - ... - A n n  g 1l2 = 

li 
where 

and G(gl, .. gn) i s  called G r a m ' s  determinant of the  functions g19 

The norm i s  "tied down" only by the fac t  t ha t  it is  derived from an inner 
gn* 

product, and tha t  

2 
I I x + Y I 1 2 + I I x - Y l l  = 2 l I X I l 2 +  211Y112* 
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(This identity actually characterizes the inner product spaces among the 

normed linear spaces). In signal approximation, the approximation is almost 

invariably in this sense. 

sense of the L norm, I I x I I 
norm has the physically meaningful interpretation of energy, and partly due to 

the "goodness" of this error criterion. 

Moreover the "distance" is usually measured in the 
2 2 2 = x2(t) dt. This is partly because the L 

In 196, E.A. Guillemin*s correspondence 

note E201 on "what is nature's error criterion" provoked some heated corres- 

pondence. Making smal l  the integral of the square of the difference between 

two signals is not necessarily the same as saying that the two signals "look 

alike" or "sound alike", although the converse comes closer to being true. 

For Oetection problem, the "energy" of the received wavefom is the important 

quantity, and hence the integral-squared (or L norm) error is a reasonable 

criterion. In other applications, such as visual recognition, a more meaningful 

2 

criterion is the minimization of the maximum difference between the two signals, 

i.e. attempt to make the signals look alike. If the signals are sufficiently 

smooth, an error criterion taking the smoothness into account may be used by 

+ ($,)y(r)) if taking the inner product to be (x,y), = (x,y) + (x,y) + . - . a .  

the signals have r continuous derivatives. This type of approximation may be 

readily handled using the Fundamental Approximation Theorem in Hilbert Space, 

although the physical interpretation of the error is not as clear. 

The usual approximation problem, as outlined above, is to choose a linearly 

N independent set of functions gl, ... g 
- ... - h g 1 1  is minimized. so that for a given signal x, the error 1 1  x-hl, g1 

and find the coefficients hl, ... An 
n n  

If the signal to be approximated comes from a knm class of signals x, the 

"goodness" of the set of approximants gl, ... gn, might be measured by 
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Different sets of N approxhating functions 

To carry the problem f'urther, achieved. qN 

may be compared by the value of 

the smallest possible qN may be 

sought over all N-dimensional subspaces. 

make sense unless one specifies the class of functions from which the N 

approximating functions may be taken. 

(in the above sense) approximclting f'unctions g 

This last statement does not really 

As reasonable as it may seem , the best 
. . ., gN, are not necessarily 1' 

elements of the set of functions to be approximated. 

In contrast to the abundance of results on approximation with a given 

set of approximation functions, the problem of finding the best set of appro- 

ximating f'unctions has hardly been touched. 

best set of f'unctions g1 ... gN for approximating functions of a given class 
has not yet been studied [l9]. However in special cases, the smallest value 

of qN in Eq. (A) has been calculated (see [ 191 p 262). 

The existence and uniqueness of a 

We present this discussion so that the engineering Signal. Approximation 

Almost invariably, engineering Problem may be placed in proper perspective. 

approximation is in the sense of linear approximation in Hilbert space as 

outlined above. Moreover, the norm used is that of L . In this sense, we 

could, in most cases, discard the words and symbols of f'unction spaces and 

return to the less sophisticated sounding "integral-squared error" criterion 

without losing a thing. 

2 

However, the notations of I I x I I , (x,y), etc., are 

attractive if for nothing more than ease of writing. 

[x(t) - y(t)] obtained using 

I I X-y I I , may hold for a.ny inner product space, and the more general formulation 

Actually, results 
2 dt as the criterion of error disqufsed as s, 

2 

may be justified. 

4.4 Fini te  Dimtnsional Signal Representation 

The basic idea of finite dimensional signal representation is to attempt 

I 
I 
I 
1 
I 
1 
I 
8 
1 
I 
I 
I 
I 
I 
1 
I 
I 
1 
1 



-73- 

t o  characterize a signal x by an ordered N-tuple [al, a , ... %I.  That is, 2 

knowing the  numbers a i s  equivalent t o  knowing x, and vice versa- Unless 

the space X f r o m  which x i s  taken is N dimensional, this one-to-one 
i 

correspondance cannot be obtained. A space of functions, X, is said t o  be 

N-dimensional i f  every x E X may be written as  

i=l 

and N i s  the  smallest integer for which this is  t rue.  The space X is  said 

t o  be generated by the N l inear ly  independent f’unctions fl, f2, ... fN. 

general, the set of sigimls ve k5sh to cfiarazttrizt  ir: a p ~ ~ t i c l 2 . m  

I n  

communication system is not finite dimensional (or it may be f ini te  dimensional, 

but we do not know what the fits are in FQ. (4-1) For a given l inear ly  

independent s e t  of function g ... we may approximate a signal x by 1’ 

The appoximation error  (or the distance between x and %) may be measured 

by any metric, but since we know that  at  the least, the signals have f i n i t e  

energy, we usually measure the  approximation error  i n  the sense of the L norm, 

I l x1 I2  = $, X ( t )  dt, and assign an inner product (x,y) : 

t o  any two flrnctions x and y. 

2 

s, x ( t )  Y(t) d t  
2 

This leads t o  probably the simplest formulation 

of the approximation problem. 

yielding e, (p2 .. %, the. minimization of 

I f  i n  (4-2) the gits are orthonormalized 
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is achieved by taking ai = (.,vi), where 

N 
rn 

(4-4) 

This is the classic approximation problem in Hilbert Space as presented 

in the previous discussion. 

which further minimizes Eq. (4-3), we are asking more than the mathematical 

approximation theory tells us. 

precise what is meant by choosing the "best" QN, or actually the best 

N-dimensional subspace. 

N If in addition, we ask for the Q, = {R, q@ 

In the following, we attempt to make more 

4.5 Optimum Basis F'unctions for a Given Set of Signals  

First of all, it is important to realize that dimensionality must refer 

to a of functions, not of a single function. A single function forms a 

one point set, and is necessarily one dimensional, regardless of the way it 

may be decomposed. 

x's are square integrable, then by taking N sufficiently large, the error 

defined by Eq. (4-3) may be made arbitrarily small. 

will not be zero. 

2 
If the 'pits in Eq. (4-4) are complete in L , and the 

For finite N the error 

If a certain amount of error can be tolerated (e.g. 

* the system can't distinguish between x and %) we may 2 
if I1 x - 5  I I ,< go 

speak of a set of functions being "approximately N-dimensional". 

Definition 1. 

to a tolerable error co2 and a given set of orkhonormal function Q = {R, .. "1 
(we write this statement as N[E~,Q 

A set of functions X is said to be N-dimensional with respect 
N 

N 
] ) if 

(4-5) 

I 
1 
I 
1 
1 
I 
1 
I 
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and if N i s  replaced by N-1, there ex is t s  xoe X such tha t  

2 I I x0-xN-1 I I 
IDo II 2 -  

While t h i s  definit ion i s  

f ind it d i f f i cu l t  t o  apply i n  

2 ' € 0  (4-6) 

(perhaps) mathematically satisfying, we would 

practice since we can usually observe only 

a f i n i t e  number of the elements of X (the s e t  of possible signals).  

camplexity of the problems leaps several orders of magnitude when we attempt 

t o  find a best @, and the dimensionality of a s e t  of f'unctions with respect 

t o  only the tolerable error. 

error. 

t o  the s e t  X, and seeking the (0 which minimizes the expected value o f t h e  

The 

Note t h a t  we are not concerned with an "average" 

This can be done, of course, by assigning same probability distribution 
N 

integral  squared error.  In 

integral  equation 

t h i s  case the 'pi are the eigenfunctions of the 

This i s  a corollary t o  the Karhunan-Loeve expansion tha t  i s  usually a t t r ibuted 

t o  Brawn [a] i n  1960, but i n  f a c t  was apparently derived first by Koschmann 

[22] i n  1954. 

depends upon the probability law. 

errors while minimizing the average error. 

random cr i ter ion i s  tha t  a l l  sets  (or ensenibles) having the same R(t,T) yield 

A di f f icu l ty  with such a cr i te r ion  is t ha t  the representation 

Also t h i s  cr i ter ion may permit large 

Another detraction from such a 

the same representation function without regard t o  the actual time waveforms. 

For example, the random telegraph signal (a random square wave assmingvales 

of -1 or 1 with equal probability, and the probability tha t  K amplitude changes 

occur i n  a time interval  of length T is  given by the Poisson distribution),  

and the output of a l a w  pass RC circui t  due t o  white noise, both would  have 
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the  same representation functions even though t h e i r  time waveforms are  

a re  completely different.  As i s  orten the  case i n  communication theory, 

the assignment of a probabili ty law allows us t o  solve - a problem, but i s  not 

necessarily the problem we s ta r ted  out with. 

Definition 2. 

t o  a tolerable  error co2 (written as N [ e o ] )  if 

A se t  of functions X i s  said t o  be N-dimensional with respect 

N That is ,  we seek the smallest number N, and the associated CP (or CPN") 

f o r  which equation (4-5) and (4-6) are satisfied. 

a re  orthonormal) are constrained only t o  l i e  i n  L . 
problem should be apparent. 

"he f'unctions %(since they 

The complexity of t h i s  2 

N The search fo r  the  best  CP i s  equivalent t o  f ixing 

N and seeking those f'unctions 'pi which achieve 

N 
2 

m i n m a x I I x -  (9 'pi) 'pi I I  
N i=l # X€X 

(4-8) 

There are  no theorems i n  approximation theory on which we can d r a w  i n  

order t o  a i d  i n  the solution of t h i s  problem, and yet it i s  j u s t  t h i s  kind of 

problem t h a t  i s  implied when one in tu i t i ve ly  speaks of a s e t  of f'unctions 

being "approximately N-dimensional" . 
It i s  the more remarkable then, t ha t  Slepian, Landau, and Pollack ([23] ) 

N [24] have succeeded i n  obtaining r e su l t s  on the "best" CP 

class  of functions, and lend preciseness t o  the in tu i t i ve  notion tha t  a signal 

for  a par t icu lar  

may be characterized by approximately 2WT numbers i f  t he  bandwidth of the 

signal i s  "about" W, and i t s  time duration is  "about" T. This notion i s  based 

I 
I 
I 
1 
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on the well known "sampling theorpm" which s t a t e s  t ha t  a s t r i c t l y  bandlimited 

signal f .  of bandwidth W may be characterized by i ts  time samples spaced 

1/2W seconds apart, and the representation takes the form 

- w  

This has l ed  a number of misuses of t h i s  theorem. One such misuse i s  the 
-T then of course one only 

Another notion i s  tha t  "if f i s  bandlimited t o  W, 
E' notion "That i f  f ( t )  i s  sman outsihe 5 < t < 

need take 2WT samples". 

and time limited t o  T, the f may be characterized (uniquely i n  fn_ct,) by 

2WT samples". 

c lass  of functions which are s t r i c t l y  bandlimited, and s t r i c t l y  time-limited 

Actually t h i s  l a t t e r  notion i s  t rue  (vacuously) since the 

i s  an empty s e t .  

The c lass  of functions considered by Pollack and Tondau [24], i s  the c lass  

of s t r i c t l y  bandlimited functions of bandwidth W, whose energy outside 

'T/2 - -  < t < /2 i s  equal t o  cT2 -(denoted by E(eT). They show tha t  fo r  t h i s  

c lass  of function, the  function cp,,cp, - 

T 

which achieve 

a re  the angular prolate  spheriodal Function$o, -- $n-l. I n  regard t o  the 

difference i n  approximating with the sampling function rather  than prolate  

spheriodal functions, they show that i f  f E E(eT), then 

rm1+ N 
00 

2 inf I f ( t)  - 1 a cp 1 d t  < C eT n n  
a - w  0 i 

i s  
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(a)  true for all such f with N = 0, C = 12, if the cp are the prolate n 
spheriodal wave functions 

(b) false for some such f for any finite constants N and C if the cpn 

are sampling functions. 

important as these results certainly are, we should not misconstrue them 

say that the prolate spheriodal wave functions a r e  - the best representation 

functions for signal approximation problems. This would be true if our 

signals satisfiedthe conditions of the above theorems. For some other class 

of functions the prolate spheriodal wave function may provide a very poor 

approximation, compared with the same number of other orthogonal signals. 

The work done by W. H. Huggins, et. al. [25], [26], [27], [28], has been 

primarily concerned with the use of orthonormalized exponential functions. 

In many ways the exponential functions are as interesting a class of signals 

as the prolate spheriodal flmction or sampling function. 

orthonormalization process has a particularly simple form as shown by Katz [29]. 

The Gram-Shmidt 

2 -a. t 
An infinite set of exponential {E ) may be complete in L , (Schaz's Theorem) 

L J 

see 1251 p 

of these signals (see [26]) is considerably greater than that of say the 

prolate spheriodal wave functions. 

that exponential function do a remarkably good job of approximating electro- 

cardiograms. Certainly we would expect a class of electrocardiograms to 

have more structure to it than just that they have some "essential" time 

. No small point in their favor is that the ease of generation 

Huggins and Young demonstrate in [27] 

duration and "essential" bandwidth. 

though exponential functions are "good" for approximating electrocardiograms 

the tag of "best signals" is still mathematically indefensible. 

difficulty in the search for a "best" set of basis functions for a physical 

In this connection, we note that even 

A major 

ensemble of signals is in describing the ensemble. In practice one can observe 
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only a finite number of the members of the ensemble. 

well and in what sense a set of functions can be described or characterized 

by a finite number of its elements can possibly be answered for a well 

defined set of functions. For physical ensembles of signals, however, one 

can only assume that if enough sample signals are observed, that they contain 

the "essential" characteristics of the ensemble. Whether the characterization 

is good or bad, it is all that one can do. 

The question of how 

4.6 Best Representation Functions for a Finite set of Signals 

A set of M signals {f,, f2, --- fM) is at most M dimensional. If the fits 
are linearly independent, Gram's determinant is greater than zero, hence the 

rank of the inner product matrix [ (fi, fj)] is M. 

K linearly independent f'unctions, the dimensionality of the set of f.'s is 

< I C  < M. 

is an indication of the "closeness" or "near dependance" of the fi's. In 

Courant and Hilbert (301, the "measure of independence is taken to be the 

If each f. is generated by 
1 

1 

It is well known [30] that the relative size of a Grams determinant - 

size of the smallest eigenvalue of the of the quadratic form 

A J 

(4-11) 
If the eigenvalues of eq. (4-11) are such that N of the M eigenvalues 

are "significantly larger" than the other M - N eigenvalues, it is sometimes 
said that the set of functions fi, --, f 
In order for this statement to have meaning, the meaning of term "essentially" 

is "essentially N dimensional". m 

must be made more precise. The "dimensionality" of a finite set of functions 

needs to be examined in the light of our previous definitions of N [eo, 01 

and N [eo] 

which provide 

Recall that for the "best" approximating f'unctions, we seek those 
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Rearranging the terms in (4-14), we seek 

2 I1 fi II 

Note that each term in the sum on K is of the forms 

(4-16) 
A d .  

The maximum of (4-16) is well known [3] and is given by the largest eigenvalue 

of the integral equation 

(4-17) 

Call this largest eigenvalue hl, and its corresponding eigenmction, cpl. 

The next cp, 'p2, is chosen to maximize (4-16) with the additional constraint 

that (v2, '9) = 0. 

of (4-17). 

This maximum is given by the next largest eigenvalue 

Continuing in this manner, we find that 

(4-18) 

M 
n 

Since K ( t , . r )  = fi(t) f. (T), the \ are found as the eigenvalues of the 
1 

~~ 

i=l 
symmetric matrix 

(4-19 1 

This is the inner product matrix of the normalized fits. 

of (4-19) are orthogonal and may be normalized. 

"he eigenvectors 
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k=l  
2 II fi II P fi "k 

i = 1, --- M 

(4-12) 

N We begin by seeking the (3 which provide 

M M N 

It seems more reasonable to consider the normalized error in eq. (4-13), 

2 
as 1 1  f - 1 1 1  may be quite small while the normalized error may be 

N k=l 
considerably larger if I I f I I is also small. The 0 which satisfy ep. (4-13) , 
do not, as we will show, satisfy eq. (4-12) (in general), but the solution 

of this "least squares" problem does provide a figure of comparison for 

different @ . N 

the problem may be cansidered an hM 'M' If the 'pi = Al fl + -- + 
i i 

application of a technique in Factor Analysis called Hotelling's method, 

34 and the problem reduces to determing the coefficients hi -- 
As the problem is linear, one would expect that the best 'pits would have this 

form. However, in the following this is not assumed, and the 'pits m e  

constrained only to be orthonormal. 

Recalling that (x,y) = x(t) y(t) dt and expanding (4-13), we now 

seek 



-82- 

The eigenfunctions of eq. (4-16) are given by 

(4-20) P Q i  fi 

Where the f ' s  are normalized, and 

of G. Then 
i . O  ph] i s  the Ath eigenvector [k' 

1 - 
= [::I m 

(4-22) 

(4-23) 

The sum of the squares of the distance from each of the  fi (normalized) 

t o  any N dimensional subspace i s  greater than or equal t o  the quani t i ty  

M - f  ?k 
k=l 

(4-24) 

H M 

i=1 k=l  
2 2 and since the  minimum of max ( E ~  ) would be at ta ined i f  the ei e q w ,  

N i f  follows tha t  fo r  any 0 

(4-25) 

.. f m ON fl k = l  
M 

The eigenfunctions given by eq. (4-20) w i l l  usually not be convenient t o  

work w i t h ,  and moreover do not usually provide the best  f'unctions required 

by eq. (4-22). These eigenfunctions could be considered as the "best" 
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representation functions in the sense that they satisfy eq. (4-23), i.e. 

they provide the smallest average error. Huggins and Young, [27] have 

made use of the eigenvectors of the unnormalized correlation matrix to 

"essentially" represent the original f'unctions fl, ... fM. 
is not claimed to be a greatest lower bound, but it does provide a figure of 

comparison for approximating N functions by N orthonormal f'unctions, selected, 

say, for ease of construction. 

The quantity ON 

The simplest exemple where the bound in eq. (4-25) is attained is the 

approximation of any two f'unctions by a single function. The best single 

approximating function for a set of two functions (f 

is given by $ = 

f2), with (fl, f2) > 0, 1' f c f  
as m y  be verified directly. lr+&il 

Without some sort of bound such as flN, one has no way of judging haw 

well a particular set of orthonormal f'unctions approximates a given set of 

signals 

Fasample 4-1 

As an example of the determination of the "essential dimensionality" of a 
-2t finite set of signals, we consider the normalized signals $2 $4 E , 

$6 E - ~ ~ ,  $8 $10 E - ~ ~ .  Their innerproduct matrix (where (x,y) = 

J=x(t) y(t) dt) is given by 
0 

1.oooO 0 9428 0.8666 
0.9428 1 0000 o - 9798 
0.8666 0 9798 1. DO00 
0.8000 0 9428 0.9897 
0 7454 0.9035 0.9682 

0.8000 
0.9428 
0 99897 
1 .oooo 
0 9938 

0.7454 - 
0.9035 
0.9682 
0 -9938 
1.0000 - 
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and i t s  eigenvalues are given by 

= 4.6586680 

i2 = o 03239158 

A3 = 0.0169404 

A4 = 0.0004492 

A5 = 0.0000267 

If only the f i r s t  eigenfunction i s  used, the  maxim error  i s  found t o  be 

0.18987, and the s e t  of 5 signals may be said t o  be one-dimensional with 

respect t o  t h i s  eigenfunction i f  an error  of 0.18987 can be tolerated.  

N = 2 and the first two eigenfunctions are used as the representative function, 

If 

the maximum errror i s  found t o  be 0.005599, and for  N = 3 the error  

i s  0.00016556. In any case the dimension ascribed t o  t h i s  s e t  of f ive  

f'unctions depends upon the tolerable e r ro r -  

t ha t  the maximum representation e r r ror  be l e s s  than 10 

If it is required, for  example, 
-6 , the  dimension of 

t h i s  s e t  would be 5, since the bound 

4 
-6 114 = 5- 1 hi = 503 x 10 

In  the next example, we examine the  "goodness" of the approximation of 

three signals by two functions which are the best  of t he i r  class, and compare 

the maximum error with the bound Q2, and the errors  obtained by using the 

f i rs t  two eigenf'unctions of eq. (4-17). 

Example 4-2 

-"lt Here we take M = 3 and the  three normalized signals t o  be J2a1 E 
-a t 

where a = (25- d36a)4 and a2 = (25+ d36a)4. The inner $8 h a 2  E 1 

product matrix is 

I 
8 
I 
1 
1 
I 
I 
1 
1 

I 
1 
I 
I 
I 
I 
II 
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I 
1 
I 
I 

I 
I 
I 
1 
I 
i 
8 
I 
1 

r 1.ooo0000 0.8834522 0.64Ooooo 1 
o .8834522 1.0000000 0.8834522 I o.64O0000 0.8834522 1 0000000 1 

with eigenvalues 

h3 = 0.0302808. 

2 
n 

For I? = 2, Q2 = (3  - 4 Ai)/3 = 0.0101. That is, for any two-dimensional 
1= 

representation, the maximum error must be - > 0.0101. 

eigenfunctions of eq. (4-17) are used as representation functions, we find 

If the first two 

the errors to be 

e = 0.005692 

e t  = 0.018897 

e = 0.005692. 

1 

3 
We now compare these results with those obtained by finding the 

representation error using the two-dimensional subspace spanned by the 

functions E , We w i l l  show that a = 2, B = 8 provide the best 

two-exponential subspace. If we denote by S [e , the subspace 

-Bt] 1 1  the distance from spanned by E and and by I I f - S [e , e 

-at 

-at 

-at -at 

f to S, it turns out that for a = 2, B = 8, 

- s [F, e-8t] I I - I I f i  
fi Ilfi I I  

- = 0.0123. (4-26) 2 - Bl 

This is to be compared with the maximum error of 0.0189 obtained using 

the eigenfunctions of eq. (4-17) as representation fhnctions. The maximum error 
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obtained using the subspace spanned by 

the lower bound Q2 = 0.0101 so tha t  i n  

exponentials provide a good approximat 

approximat ions . 

-2t -8t 
E and E is  a l so  quite close t o  

a very r e a l  sense these two simple 

on. The remainder of t h i s  exponential 

We first make use of a r e su l t  derived l a t e r  i n  t h i s  chapter t h a t  the 

representation error obtained by approximating the normalized function 

J 2 a  E-& by S [E’&, E-’~] i s  given by 

(4-27) 

For a: = 2, B = 8, the errors  obtained by se t t ing  a = (25$369)/4, 4, 

(25+ J369)/4 a re  all equal and have the value 81. I, 

does not by i t s e l f  necessarily imply tha t  a = 2, I3 = 8 are the best  exponents. 

However, over the in te rva l  (25- J369)/4 - -  < a < (25 + J369)/4, the equation 

& 

i s  indicated by the sketch i n  Fig. (4-1). 

about 

This equal e r ror  property 

2 
= 0 i s  sa t i s f i ed  for  a = 2, 4, 8. a = 4 provides the only maximum. This aa 

It i s  seen tha t  any perturbations 
1 = 2, f3 = 8 must resu l t  i n  a maximum error  exceeding g1. 

e2 as a function of the  parameter a 

Fig. 4-1 

-2t -8t Even thoughthe f’unctions E , E provide remarkably good approxbnants 

t o  the three or iginal  signals, we have not shown tha t  they are the best 

f’unctions t o  use. We do know how well  they perform compared t o  the bound f12 

1 
1 
I 

1 
I 
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(which may be too small). In practice, this is a l l  one can do; select a set of 

N representation function, and by actual trial, determine if the representation 

is satisfactory. We would also i i k z  ts have an idea as to how much t o  expect 

from this N-dimensional representation, and the bound in eq. (4-25) provides a 

quantitative measure of the goodness of the approximation. 

Considerable work has been done using sets of expoential functions as 

approximating functions. This has been done primarily and almost exclusively 

at Johns Hopkins University. Of particular relevance here is the work by 

McDonough [28] who attempts to find the best exponents ai for the functions 

-m to approximate a given signal. E , E :  

A.A. Wolfe (unpublished) in connection with an adaptive communication system. 

This has also been done by -a1t 

A n  approach to their problem is to take a sufficient number of the functions 
-a. t 

so that the representation error is considerably smaller than the 1 
E 

allowable error, and then use some perturbation scheme to reduce the number 

of representation function required to achieve the required error. 

problem is mathematically straightforward (for approximating a single f’unction) 

The 

but a practical difficulty arises in that the approxination errGr has been 

noted to be relatively insensitive to perturbations of the a., and thus 
1 

-ding the best ai is computationally very difficult. 

In the following, we develop some rather remarkably simple and computationally 

useful error expressions for approximation using exponential fbctions. 

4.7 Error Expreesions for Exponential Approximation 

In order to appreciate the simplicity and usefulness of the results to 

follow, we examine the standard procedures for finding the distance of a 

function x from the linear subspace spanned by N linearly independent 

gN’ fmctions gl, 

[83 p. 15) shows that 

A f’undamental result in approximation theory (ACHIESER 
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O f  course the s e t  of f'unctions gl, ... g may be orthonormalized yielding N 

... %9 i n  which case the squared e r ror  i s  given by 
N 

'9' 'p2 

(4-30) 

The simplicity o f t h i s  expression i s  only apparent, since the expression for  

the cp's i n  terms o f  the  g ' s  i s  (see previous chapter) j u s t  as involved as 

(4-28) and i n  fact  the same amount of labor i s  involved whether one uses Eq. 

(4-28) or Eq. (4-30). 

are obtained fromthe g's .  

spanned by the g's. 

the decreasing i n  error  i f  the number of cpts i s  increased. 

equations (4-29) and (4-30) are i n  the i r  simplest form. 

i n  general, be arranged t o  exhibit  the par t  of the e r ror  due t o  use of a 

par t icular  g .  

the approximation e r ror  of perturbations of the parameters Bi can usually 

be obtained only by carrying out the operation indicated i n  E q .  (4-29) for  

different values of  the parameters and observing the r e su l t .  

changing the value of a single parameter would require a wnplete recomputation 

of the error .  

Also it, of course, makes no difference how the ( P I S  

"he space spanned by the (P'S i s  the same as tha t  

Equation (4-30) has the conceptual advantage of exhibiting 

In  any case, 

That is ,  they cannot, 

In par t icular ,  i f  the g ' s  have the form g(t:Bi), the e f fec t  on 

I n  general, 

1 
I 
1 
I 
t 
8 
I 
8 
I 
8 
I 
i 
1 

1 
1 
1 
I 
8 

m 



4.8 Single EkponentiaJ. Approximated by a Set of Exponentials 

We derive here an expression for  the squared error  
t 2  -a2t ... aAe-aN 1 1  

e 2 =min  (4-31 j 
a. l l a - a t  1 1 2  
1 

t ha t  i s  a single exponential, e-at, is t o  be approxirnated by a linear ca3nbination 

of the functions e , . G 

a single normalized exponential, f 

expnentid functions, gi =&a. E 

By direct  Computation, the error i s  given by 

-a t -a t . First we compute the error of approximating 1 

by another single normalized 
-a. t 
1 

1 

a-a. 2 

We now show tha t  Eq. (4-31) reduces t o  

-a t 
2 2 2 

= El ‘2 - 0 .  E N  
1 1 2  

-a t 1 
2 ... 9 

E =min 
a< II cat I I  
A 

(4-33 1 
The resu l t  i s  remazkably simple. The effect  of adding another expoential 

2 , i s  t o  multiply by -98 -a t 1 ... E t o  the se t  of approximants E 
-%+1 

E 

the  error already obtained. Also, the effect  of varying a par t icular  ai i s  

c lear ly  exhibited, and one only has 

tha t  ci2 i s  the normalized error of 

t o t a l  error i s  the product of these 

not t rue  for  arbi t rary f’unctions. 

2 t o  recompute the single term ci . 
approximating by E. , and the 

individual errors.  This i s  certainly 

Note 
-a t i 
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The proof of Eq. (4-33) is readily obtained using a result by Achieser 

[8] on approximating the function tq by a linear combination of the functions 

t , t ... t . A simpler proof can be obtained following the outlines Pi ’2 -PN 

of the proof we use later on the approximation of a sum of exponentials. 

Acheiser’s result is that 

(4-34) 
a ’  -X 1 

where (ta, t’) = t t dt. By making the change of variable t = E , 
it is easy to obtain Eq. (4-33) from Eq. (4-34). 

4-9 A Sum of Exponentials Approximated by a Set of Exponentids 

While the above result is both interesting and useful, a much more 

practically significant result would be a simple, computationally useful 

expression for the error incurred by approximating a sum of exponentials, 

-a t i (4-35) 

. As was -”Nt -a t 1 
by a linear combination of others exponentials E 

remarked earlier, we may use Eq. (4-37) as an approximation to a given 

, ... E 

function or set of functions, and by taking M sufficiently large, the 

approximation error may be made as small as desired. We would then try to 

chose the N ai’s (N < M) in order to achieve a prescribed allowable error. 
* 

A simple error expression for the approximation of a sum of exponentials 

can in fact be obtained, but is apparently somewhat harder to show. 

* A 
This procedure is justified since if f is an approximant to g and f is an 
approkmant to f, than by the triangle inequality, 

I Ig-? I I 
R,””ghly speaking, this says that 
f is close to g. 

“ 2  
= I I g-f+f-? I I 5 1 I I g-f I I + I I f-f I1 I 
if f is close to g and ? is close to f, then 
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'-a t -a t 1 2 , E ... First, we suppose that the set of approximating functions E 

-a t. 
E N- -are orthonormalized in any manner yielding '9, ... %. We wish to 

approximate a function 
M M 

f =  1 BiE 'OLit = 1 Bi fib) (4-36) 

-"Mt is arbitrarily , . . . E 
-a t 1 (We may consider that the subspace spanned by E 

close to a set of functions we are attempting to characterize ). 

The amroximation error is given by Eq. (4-30) 

N 
E2 = I I f I I - c (f,qQ2 

k=l 
M 2 

= II 1 Bifi 1 1 2  - f [ f Si<fi (%I] 
i=1 k=l  i=l 

(4-37) 

(4-38 1 

By rearranging the terms of this expression, we may write 
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So far, we have not made use of the exponential nature of the functions, i.e., 

Eq. (4-40) holds for the approximation of the sum of arbitrary functions fi by 

arbitrary orthonormal functions %. We note that Eq. (4-40) involves only the 
2 coefficients in Eq. (4-36), the ei , and terms of the form 

(4-41) 
k=l 

which may be written as 

(4-42) 

then using the Schwartz inequality 

We have not yet made use of the exponential nature of the functions. We show 

if the functions are exponentials, that 

(4-44) 

a - a  b - a  
) , and 

)>€b = 'fi (btai where ea = -fi ( a a 
i 

i=1 'i=i 

hence eq. (4-40) may be written as 

(4-45) 

a qradratic formwell suited for hand or machine computation. A l s o  the effect 

of varying the a's is clearly exhibited. i 
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The remainder of t h i s  section wil l  be devoted t o  proving: If 
.LA 

- V b  
fb = E 

of f’unctions E , *-.,  E 

, and the ~ i ,  are obtained by orthonormalizing the se t  -at fa = E 

Y 
-alt -”Nt 

then (4-46) 

The means by which the % are obtained from the l inear ly  independent 

is of course immaterial. Whatever -”Nt -a t 1 set of f’unctions E , . . ., E 

orthonormalization technique is used, the % w i l l  have the general form 

Then 

i=l 

N 
Y 

1 
= 1 &ki &+ai 
i=l 

N 

-L i=1 

(4-48) 

(4-49) 

We can write Eq. (4-51) as 
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where 42 i s  a polynomial of degree no higher than 2N (e.e. the highest 

exponents of a and b are no higher than N ) .  Carrying out the summation 

indicated i n  Eq. (4-45), 

(4-53) 

. .  . .  
i=l i=1 

(4-54) 
PN(a, b; al, ... aN) 

fi (a+ai) fi (b+ai) 

i=l i=l 

- - , 

p i s  a l so  a polynomial of degree < 2N since each pk was of 
where PH = t k  

k=l 
degree no higher than 2N. Then Bq. (4-45) becomes 

1 
atb 
- -  

1 
atb 

= -  

i=l i=l 

(4-55) 

(4-56) 

i=l i=l 

Now i f  a or b equals any of the ai, eq. (4-55) becomes zero since the appro- 

ximation e r ror  i s  zero (see Eq. (4-43)). This means tha t  the polynomial 

(a-ai) and fi (b-ai), or n is  divis ible  by 

i=1 i-1 

(4-57) 
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We need only t o  find AN. 
see from Eqs. (4-48) and (4-49) that 

If we l e t  both 4 and b become arb i t ra r i ly  large, we 

Also, we see that 

l im 

a,b, + =  

(4-59) 

Thus from Eq. (4-57), = + 1 independent of N. We have shown then that  

2 -at 
where ea and eb2 represent the squared distance of 42a E 

respectively, fromthe subspace spanned by the  functions E , E 

That is, 

and 42b E-at 

2 -98 -alt -a t 
> .. E 

2 and eb2 are the  normalized errors.  

By set t ing a = b, Eq. (4-33) is  obtained. 

Note t h a t  the  sign of 

However, Eq. (4-61) cannot be 

obtained from Dq. (4-33). or eb is  determined by the  

defining Eq. (4-47) and is  not f. J 2  

4.10 ~exirmrm Error of Approximating Sum of Eqonentids 

The squared norm of a function 

-a. 1 t 

i=l 

(4-62) 
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= f f f3.B. (f.f .) . The normalized squared error of 
1 3  1 J  

is given by I I f I I 
approximating a f’unction of the form (4-42) is obtained by dividing Eq. (4-45) 

i j  

by II f I I  

i j  

In matrix notation, we write 

€2 = B T E F E B  

BT F B * 

where 

and 

P =  

F =  

E =  
€1 

0 

€2 

(4-63 1 
I 
1 

(4-64) 

(4-65 

(4-66) 

F is positive definite since its determinant is a Grams dtuerminant. We want 

to find the maximum error incurred in approximating a sum of exponentials by 

elements of the subspace spanned by the functions E , - 9 .  E . This -98 -a t 1 

maximum error determines the dimensionality of the set of f’unction 
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-a t -a t 
, ... E , where dimensionality 1 with respect to the set of functions E 

is as defined in Eq. (4-5 ). We seek then the maximum of 

B " E F E B  
rn 

A theorem by Courant E421 p. 66, states that the maximum of 

T x A x  

xT P x 

is given the largest eigenvdue of the matrix 

P-l A (4-69) 

where P is definite . 
In our case then, we seek the largest eigenvalue of 

This largest error may not be attained for a particular ensemble, as the 8 

may not take on all possible values. E q .  (4-70) then represents an upper 

bound on the representation error. Practically, it would probably be more 

convenient to compute the actual errors using Eq. (4-45). 

be pursued farther by seeking 

i 

This problem could 

min { largest eigenvalue of F - ~  E F E) 

ai, i = 1, N 

(4-71) 

but as was remarked earlier, the approximation error is relatively insensitive 

to sma l l  perturbations of the ai, and also it is shown in the following 

discussion that such a minimal representation is not really needed. The 
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goodness of the approximation for a given N may be estimated using Eq. (4-2.5) 

where the ft s are given by Eq. (4-62). The largest eigenvalue of Equation (4-70) 

represents the largest normalized error of approximating an element of the 

subspace spanned by E , . . ., E by an element of the subspace spanned by -%it -a t 1 
-a t N -a t 1 , ...) € E 

Example 

To illustrate the simplicity of computation afforded using the derived 
-t -3t , f2 = E error expressions, we consider the approximation of fl = E , 

-2t = by the subspace spanned by g = E and gl = E - ~ ~ .  Of interest f3 1 

are the normalized approximation errors and the comgarison of (fi, f.) and 

(f 

J 
A A  

f .). Using the expressions derived above we find immediately that i’ J 

2 1  = -  1 
25 

1 2 1  
1225 

and 

2 For comparison, we compute el using 



1 = -  

l l f 1 I l 2  

Expanding the above determinants and dividing, yields  f i n a l l y  

and it i s  seen tha t  there is more labor involved i n  finding only one of the 

normalizal errors  using t h i s  procedure than finding a l l  three of t he  errors  
A A  n A  

and the  three (f ,f ) using the f i r s t  technique. Moreover, (fi,fj) cannot 
i j  

be found using t h i s  l a t t e r  method. 
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2 A h  The quantities ei , (f ,f ) may also be found by orthonormalizing the 
i j  

set of function gl,g2 yielding ql, $2 and computing 

2 
IIfi I I  

and fi = (fi,S1) t1 + (fi,S2) $2. 

f. 's must be found in order to compute (fi,f .) . 
1 J 
(fl,f2). 

using the Gram-Schmidt procedure or the equivalent Kartz procedure. 

One must not only find q1 and **, but the 
For comparison, we compute 

The 4 ' s  may be found by orthonormalizing the set of function gl,g2 

One set of 

$ I s  is 
-2t $1 = 2€ 

-2 t  -47 
= $8[-2~ + 3e 

$2 

00 

(f,,le2) = 1 e-t $8[-2~-% + 3~ -4t] dt = $8 [ 5 ] 
2 (f2,*l) =I 26-jt dt = - 5 

0 

(fk,-#,) =k 

0 
W 

m 

$8 [ - 2 ~ - ~ ~  + 3e -4t] dt =$8 ( $5). 

finally, 

4 8 - 44 - - . This result agrees with that 
A f t  

(f1,f2) = i5 - ' m 5 )  175 
found using the f'irst method, but was obtained with considerably more effort. 

R 
1 
1 
1 
1 
1 
1 
a 
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If now the exponents of gl and g are changed in an attempt to obtain a better 

representation, the latter two methods require a complete re-computation, 
2 

while the first method allows the desired quantities to be found with a 

minimum of effort. 

4.11 Signal Estimation 

As was remarked earlier in this chapter, several authors have made use 

of the idea of characterizing a received signal x by its projections onto a 

known set of signals (9 . 
the 'pi are complete in the space from which x is taken, then x can be charac- 

terized to wit'nin an arbitrarily smaii degree of accuracy. 

N If a sufficient number of the 'pi are used, and 

If the signal x 

was known exactly, the optimum receiver would be a filter matched to x. If 

%(t) = f ai'pi(t) is an approximation to x relative to the 'pi, and the 
receiver is a filter matched to %, then the system is subject to the errors 

considered in Chapter 11. Even if x is N-dimensional relative to the 'pi's, 

the measurements of its coordinates are invariably corrupted by noise so that 

an exact characterization of even a finite-dimensional signal is not possible 

and one can only make estimates of the coordinates. If we assume that N is 

sufficiently large so that %(t) approximates any possible received signal x(t) 

within a prescribed tolerable error, then the problem becomes that of estimating 

the a. in the expression %(t) = aivi(t). 

by %(t) = 1 aivi(t) where the ai's are the estimates of the a.'s. The 

received waveform is considered to be of the form 

The estimate of %(t) is denoted 
1 N f 

1 
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where n(t) is the additive noise. The simplest possible estimate of % is 

t o  take 

= % + t o  
If the noise is white and gaussian, this estimate is a conditional maximum 

likelihood estimate. 

parameters see Glazer 1151 and Parks [31]. 

with spectral density No, we have that 

For a detailed treatment of estimation of linear signal 

If the noise is white zero mean 

since the % are orthonormal. 

corrupts the measurement of each signal coordinate. 

estimated have the same energy 

In other words, the same amount of noise 

If the signals to be 

b 

0 

then, in general, the larger the required N, the smaller (on the average) are 

the ai, and since the measurement noise remains the same, one would like to 

use the smallest N consistent with the allowable error- For any finite N, 

however, we may take a sufficient number (M) of observations and make the 

effect of the noise arbitrarily small. This may be done by taking the sample 

mean 
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I 
I 
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1 
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! 
1 
I 

M 

=.,.BCa: (4-72) 

j=1 J 

- 
- “k + ?kM’ 

nk are Since the noise i s  white zero mean and the wi are  orthonormal, the 

uncorrelated and 
J 

(4-731 

By taking M suf f ic ien t ly  large the variance associated w i t h  the estimate of 

an individual coordinate may be made a r b i t r a r i l y  small. 

of in te res t  i s  the error  of approximating % where we define 

However, the quantity 
A 

generali ty we take No = 1. E then represents the signal-noise r a t i o .  Write 

independent zero mean, uni t  variance gaussian random variables.  The probabili ty 



density function p(z) i s  given by the well-known chi-square density function 

Recall tha t  N i s  the required number of s ignal  coordinates. Since the error  

E is  always greater than zero, a reasonable c r i te r ion  is  t o  choose a tolerable  

error  y and decide on a confidence leve l  P where P i s  the probabili ty tha t  

Q ,< y or  z - yE. That is, 

YE 
P = $, p(z) dz. 

If M observations are  made and an estimate based on the M observations a re  

made according t o  Eq. (4-72), it i s  seen from Eq. (4-73) t ha t  the  e f fec t  of 

making M observations i s  t o  increase the effect ive signal-noise r a t i o  by a 

factor of M. That is, the probabili ty tha t  a f t e r  making M observations the 

normalized approximation error  i s  l e s s  than or equal t o  y i s  given by 

This function is well tabulated. 

Gamma-Function" edited by Karl Pearson may be used i f  i n  h i s  I(p,p) we set 

For instance the "Tables of the Incomplete 

1 and MyE = p J2N, then p = 2 -  

Recall t ha t  N i s  the number of coordinates required fo r  a given error  using a 

par t icu lar  s e t  of @ . N "he number N w i l l  be different fo r  different  choices of 

1 
I 
I 
I 
I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
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representation functions. For a particular class of signals, choosing the 

representation functions to be Laguerre function may require N = 20 while the 

same approximation error might be achieved by using only 5 sinusoids. 

(4- 2 ) we plot P vs MyE with N as the parameter, and in figure (4-3 ) we plot 

MyE vs N with P as the parameter. 

number os signal coordinates by proper choice of representation functions 

depends to some extent on the nature of the problem. If one may make any 

number of observation, then the signal may be estimated within an arbitrarily 

sma.ll error for any value of signal-noise ratio. 

the channel may be changing at such a rate that the signal is Aessentially 

the same" for only a small number of observation intervals. 

order to meet the allowable error requirement with a prescribed confidence 

level, one can either increase the signal-noise ratio (supply more transmitter 

power) or attempt to reduce the required number of signal coordinates. 

choice of (the allowable error) depends upon the type of signaling scheme. 

Figures (2-6), (2-7), (2-8) in Chapter I1 indicate that if one is using one 
signal (the on-off case) an approximation error of 0.1 may be satisfactory, 

while if the system attempts to utilize two orthogonal signals, y must be an 

order of magnitude smaller to ensure satisfactory performance. For P = 0.95 

(the probability is 0.95 that the approximation error is within the allowable 

error requirement) the reduction of the required number of signal coordinates 

from say 20 to 10 allows a reduction of the quantity MyE from about 31.5 to 

about 18.3, a factor of 1.72. 

ratio by a factor of 1.72 for fixed M and y, or if y and E are fixed this 

reduction in the number of required signal coordinates allows the number of 

observations to be decreased by a factor of 1.72. 

noise ratio, this reduction in Mmay or may not be significant. 

In figure 

The significance of being able to reduce the 

However, the characteristics of 

In this case, in 

The 

This is equivalent to increasing the signal-noise 

Depending upon the signal- 

If the signal- 
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noise ratio is high, M may already be small (say 5 )  and reducing the number of 

observation to 3 by a better choice of signal coordinates is probably not 

worthwhile. However, if the signal-noise ratio is low, the reduction of M from 

say 32 to 18 (a factor of 1.72) is significant. 

and (4-3) that a search for a minimal number of signal coordinates is in 

general not really needed. 

could be met with a minimum N = 16 rather than N = 20, the quantity MyE is 

decreased only by a factor of about 1.1, and for the same signal-noise ratio 

as in the previous case, would mean a reduction of M from 32 to 30; a decrease 

It is seen from figures (4-2) 

For example, if the allowable error requirement 

hardly worth the effort of seeking any better signal coordinates. This bears 

out the statement made earlier in connection with exponential function 

approximation that a minimal representation was not really needed. However it 

is seen from the above that a poor choice of signal coordinates (i .e. many 

more than are necessary) can materially affect system performance. 

The techniques of Chapter I11 for constructing transmitted signals to 

produce desirable received signals depended upon being able to measure the 

inner produce ( 
generating signals. 

ei(t) 8. (t) dt ) of the channel's responses to the 
The inner products can be measured in any manner. 

1 

In 

general this can be done by approximating ei by 
N 

'i = 1 &ik $k 
k=l 

N 
( 0  i' e.)  J = 1 aik ajk 

j 

If the set of qk is complete, by taking N sufficiently large the above 
approximation can be made as close to equality as is desired. If the channel 

characteristics do not change with time, then of course an rirbitrarily large 

amount of time may be spent making measurements to an arbitrary degree of 
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accuracy using any finite number of signals coordinates. 

problem of rqt imum or even "good" choices of signal coordinates is not a 

factor in the system design. 

In this case, the 

Act- the channel characteristics do change with time and it is this 

phenomena that "adaptive" systems are supposed to combat. However, to the 

authors knowledge, there has been no analysis made of a system where the 

changing characteristics of the channel is taken into account. 

system "adapts" to a fixed but unknown signal (or signal parameters). 

if the signal is considered to be a sample f'unction from a random process, once 

it is selected it is fixed. 

vary **sirnu" enough the system win "track" the s iowu changing signal. 

It is only when the measurement must be made in a given number of observations 

(before the channel characteristics change "appreciably") that consideration 

must be given to the selection of signal coordinates. 

That is, the 

Even 

It is merely assumed that if the characteristics 

In this chapter an attempt was made to clarify and make more precise 

the concepts associated with "best representation functions and niminal 

finite-dimensional signal representation. 

notion of a set of signals being "approximately finite dimensional" raises rather 

deep mathematical problems when the statement is made more precise. 

selection of a best or minimal set of representation flrnctions for an 

arbikrary ensemble of signals is in general not possible. 

the difficulties associated with such a problem is in adequatley describing the 

ensenible. In an actual physical situation, a complete description, and hence 

a truly minimal representation is precluded since one is able to observe only 

a finite number of the members ofthe ensemble. One can only assume that the 

observed members of the ensemble are "representative" of the ensemble in the 

It was seen that the intuitive 

The 

Not the least of 
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sense that if a set of approximating f'unction is constructed to approximate 

the observed members of the ensemble, the approximation is also acceptable 

for the other members of the ensemble. In this connection, methods were 

developed for obtaining an estimate of the goodness of any N-dimensional set 

of approximating functions based on the observation of Mmembers of the 

ensemble. 

If an ensemble of signals is initially characterized by its projections 
-a t 

where M is taken -"Mt 1 onto a set of M exponential fbnctions E , ..., E 
sufficiently large to ensure adequate characterization, the dimensionality of 

the representation may be reduced by approximating signals of the form 

-%It 
4- ... + P M E  

-a t f = P p  1 

-a t -a t 
+ ... % E  . In this connection, 1 by functions of the form f = A1 E 

very simple and computationally u s e m  expressions were developed for the 

error 

The selection of the signal coordinates (or the representation f'unctfons) 

in connection with "adaptive" comunications problems is seen to be a relevant 

factor when observation or measurement time is limited, although a minimal 

representation is not required. 
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Chapter 5 

CONCLUDING REMARKS 

The selection of optimum signals and the atwending approximation error 

has been based on the assllmptionthat the optimual receiver was a correlator 

or matched filter. If the statistics of the noise is gaussian, the optimum 

receiver does have the form of a matched filter. 

the form of the optimum receiver is not known except for a few special cases 

( e . g .  Rayleigh noise). 

receiver for non-gaussian noise precludes the selection of optimum signals 

for these cases. 

Chapter I1 is valid for coherent detection or arbitrary signals. 

extreme sensitivity of systems designed to receiver orthogonal signals is more 

likely to occur when the signals occugy the same time interval and the same 

bandwidth. FSK, for example, suffers only slightly from mismatch error when 

the two frequencies are sufficiently for apart. 

be the sensitivity of systems designed to receive more than two orthogonal 

signals. 

such an investigation. 

If the noise is not gaussian, 

This lack of knowledge of the form of the optimum 

The error due to filter and signal mismatch computed in 

The 

A study of some interst would 

The technique used here for the binary case should prove u s e m  for 

For channels having bandwidths comparable to those of the transmitted 

signals, considerable waveform distortion may be present. This waveform 

distortion provides one source of mismatch error considered in Chapter 11. 

In Chapter 111, computationally simple techniques were developed for con- 

structing transmitted signals s~ that the received signals would, for example, 

be orthogonal. The receiver may be a discrete receiver, distinguishing 
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between the received signals by using, for example, a number of time samples 

of the waveforms. However, the transmitter must transmit through the channel 

analog waveform, (i.e. not a sequence of numbers), so that when the signals 

pass through a waveform-distorting channel, the signal construction must 

be bases on analog waveforms even though the receiver operates only on the 

time samples. 

That is, the signals a r e  constructed to have a prescribed inner product matrix 

for a given observation interval. 

different from the interval over which the signals were designed to be, say, 

orthogonal, the resulting inner product matrix may be different from the 

desired one. 

correlation f'unctions to be such that imperfect synchronization does not 

materially affect the performance of the system. 

The procedure given here is valid for coherent reception. 

If the observation interval is slightly 

"hat is, one would also like the autocorrelation and cross- 

A study combining the 

techniques developed in Chapter I11 with the correlation properties of the 

signals would be of considerable interest. 
1 

The problem of finding "best" finite-dimensional subspace for representing 

signals from a given class was seen to be revalent to the detection problem if 

the number of coordinates is fixed, and the signals are known to be of a 

particular class. 

presentation of the signal has no effect on the performance of the system. 

That is, if NS's or M$'s are required to represent the signals, both produce 

the same test statistic. 

sufficient to represent the signal, the discrete receiver is subject to 

the type of error considered in Chapter 11. 

estimates are made of the received waveforms, the selection of signal 

coordinates enters the problem somewhat differently. 

observation intervals required to form a good estimate of the signal waveform 

depends upon the number of signal coordinates required. 

The number of coordinates required to yield a good re- 

If however, the number of coordinates is not 

In adaptive receivers where 

Here the number of 

It was shown that 

8 
1 
I 
1 
I 
1 

I 
I 
1 
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for the important case of conditional maximum likelihood estimates the 

n i i b e ~  ef reqiiirz2 coordinates is not c r i t i c a l ,  clth=*.@ t h e  z - i e r  of 

required signal coordinates plays an important ade when the channel charac- 

teristics are changing in such a manner that the signal may be assumed to be 

essentially the same for only a smaU number of observations. 

However, actually finding “best” finite-dimensional representations for 

given classes of signals, where the problem is precisely stated, is at best 

difficult, and in any practical situation probably impossible. The problem 

has received comparatively little attention from mathematicions with apparent 

good reason. 

be judged in a particular application. 

f’unctions have proven to provide satisfactory approximations with a remarkably 

SmaJl number of exponentials. 

applications, exponential functions possess many useful properties as 

demonstrated in the references. 

further extends the usefulness of exponential function approximation. 

this connection, an investigation of other parametric families of functions 

having approximation properties similas to those of exponentials may prove 

to be of significant value in theoretical investigations. 

The relative merits of any set of approximating signals must 

In certain applications exponentiai 

Aside from their usefulness in particular 

The error expressions derived in Chapter IV 

In 



8 
I 

I 

I 

BIBLIOGRAPHY 

8 

I 

8 
8 



I 
I 
1 
I 
I 
1 
8 
1 
I 
I 
1 
8 
8 
I 
8 
I 
8 
I 
8 

-114- 

BIBLIOGRAPHY 

1. W. Davenport and W. Root, Random Signals and Noise, McGraw-Hill Book 
Co., Inc., 1958. 

2. D. Middleton, An Introduction to Statistical Communication Theory, 
McGraw-Hill Book Co., Inc., 1961. 

3. S. G. W i n ,  Integral Equations, Pergamon Press, N.Y., 1957. 
4. J. H. H. Chalk, "The Optimum Pulse Shapte for Pulse Communication," 

Proem I.E.E., March 1950. 

5. R. Weinstock, Calculus of Vanations, International Series in Pure 
and Applied Mathematics, McGraw-Hill Book Co., Inc., 1952. 

6. I. Gerst and J. Diamond, "The Elimination of Intersymbol Interference 
by Input Signal Shoping," Proc. I.R.E., July 1961. 

7. J. C. Hancock, H. Schwarzlander, R.E. Totty, "Optimization of Pulse 
Transmission," Proc. I. R.E., October 1962. 

8. N. I. Acheiser, Theory of Approximation, Uqar Publishing Co., N.Y., 
1956 

9. Baghdady ed., Lectures on Communication System Theory, McGraw-Hill 
Book Co., Inc., 1960. 

10. A. V. Boldkrishnan, "A Contribution to the Sphere-Packing Problem of 
Communication Theory," J. Math. Anal. and Appl., December 1961. 

ll. A. H. Nuttall, "Error Probabilities for Equi-Correlated M-ary Signals 
Under Phase-Coherent and Phase-Incoherent Reception," I.R.E. Trnas. 
on Inf. Theory, July 1962. 

12. D. Slepian, "Report on Progress in Information Theory in the U.S.A. 
1960-1963," I .E.E .E. Trans. on Inf. Theory, October 1963. 

13. C. A. Stutt, "Information Rate in a Continuous Channel for Regular 
Simplex Codes," I.R. E. Trans. on Inf. Theory, December 1960. 

14. E. A. Guillemin, The Wthematics of Circuir Analysis, M.I.T. Technology 
Press, 1949. 

15. E. M. Glazer, "Signal Detection by Adaptive Filters,'' I.R.E. Trans. on 
Inf. Theory, April 1961. 



16. 

17- 

18. 

19 

20. 

21. 

22. 

23 

24. 

25 

26. 

27 

28 

29 

30 

31 - 

32 

-115 - 
C. V. Jakmtz, et. al., "Adaptive Waveform Recognition:' Proc. Fourth 
London Symp. on Inf. Theory. 

D. Jackson, me Theory of Approximation, Am. Math. SOC. Coll. Publ. 
XI, New York, 1930. 

P. Koyovkin, Linear Operators and Approximation Theory, Delhi 1960. 

M. Golomb, Lectures on Theory of Approximation, Argonne National 
Laboratory, 1963. 

E. A. Guillemin, "What is Natures Error Criterion", I.R.E. Trans. on 
Circuit theory, March 1954. 

J. L. Brown, "Mean Square Truncation Error in Series Expansions of 
Random Functions," JI Siam Vol. 8, 

A. K o s c ~ ~ ~ M ,  "On the Filtering of 
Dissertation, School of Electrical 
August 1954. 

D. Slepian, H. Landau, H. Pollack, 
Fourier Analysis and Uncertainty, 
3746 
H. Landau and H. Pollack, "Prolate 

- 

March 1960. 

Nonstationary Time Series," Doctoral 
Engineering, Purdue University, 

"Prolate Spheriiodal Wave Functions, 
Bell Telephone System Monograph 

Spheriodal Wavefunctions, Fourier 
Analysis and Uncertainty- - III," Befi Telephone System hnobaph 
4238. 

W. H. Huggins,"Representation and Analysis of Signals; the Use of 
Orthogonalized Exponentials," The Johns HDpkins University School of 
Electrical Engineering, Reports Number AFRC TN-58-191. 

D. Lai, "An Orthonormal Filter for Exponential Waveforms," the Johns 
Hopkins University School of Electrical Engineering, Report Number 
AFRC TN-58-191. 

T. Y. Young and W. H. Huggins, "On the Representation of Electrocardiograms", 
I.E.E.E. Trans. on Bio-medical Electronics, July 1963. 

R. McDonough, "Matched Exponents for the Representation of Signals," 
The Johns Hopkins University School of Electrical Engineering, Report. 

W. H. Kautz, "Transient Synthesis in the Time Domain," I.R.E. Trnas. 
on Circuit Theory, September 1954. 

R. Covrant and D. Hilbert, >, Vol. I, 
Interscience Publisheres, Inc . , New York, 1953. 
J. Parks, "Statistical Estimation of Normalized Signal Parameters", 
The Johns Hopkins University Badiation Laboratory, Tech. Rept. AF-72. 

E. Bodewig, Matrix Calculus, Interscience Publishers, Inc., New York 1959. 



-116- 

33. H. Schwarzlander, "Certain Opthum Signaling Waveforms for Channels 
with Memory," Doctoral. Dissertation, School of Electrical Engineering, 
Purdue University,August 1964. 

W. H. Huggins, "Signal Theory," I.R.E. Trans. on Circuit Theory, 
December 1956. 

C. W. Helstrom, "Statistical Theory of Signal Detection," Pergamon 
Press, Oxford, 1960. 

34. 

35. 



I 
t 

I 
8 

8 

8 



-117- 

APPENDIX 

The following definitions are taken from Chapter I of [8].  

[All "he Concept of Metric Space. 

i s  known as a metric space, and the elements m e  called points 

A se t  E having the elements x,y,z,... 

of the space, i f  for  every pair  of elements x,y there can be 

found a corresponding non-negative number D[x,y] which i s  called 

the distance between the points x and y, and which sa t i s f i e s  the 

following conditions: 

A .  D[x,x] = 0 

B. 

C. 

D[x,y] = D[y,x] > 0 (if x # y)  

D[x,z] ,< D[x,y] + D[y,z] (triangular inequality) 

[A21 "he Concept of Linear Normalized Space. 

x,y,z,... i s  called a linear normalized space, the elements themselves 

A set E having the elements 

points, vectors, or functions, i f  

1. "here is def inedin E an operation, which we called 

addition and denote by the symbol +, i n  re:spect t o  

which E forms an abelian group; the zero element of the 

group E w i l l  be denoted by 0; 

2. A multiplication of the elements of the set E by 

(real  or complex) numbers a, 8, , ... is  defined so tha t  

a(x+y) = m+ary 

a ( P 4  = (@)x 

(a+p)x= asc+py 

1. x = x  
0. x = o  



-118- 

3 .  To every element x E E there corresponds a certain positive number 

I I x I I called the - norm of the element x, which satisfies the conditions 

11x11 = 0 if and only if x = 0 

[A31 The space L 

measureable in the interval [a,b], whose absolute value to the p 

(p > 1). By LP[a,b] is meant the totality of all functions 
th 

power is integrable in the sense of Leberque. In this connection, 

addition and multiplication with complex numbers are to be considered 

in the ordinary sense. P Two elements x = x(t), y = y.(t) E L w e  

identified if the equality x(t) = y(t) holds almost everywhere. 

The norm is defined by 
b 1 

2 It can be shown that is a linear normalized space. For p = 2, L 

denotes the space of f’unction with finite energy. 

loss of generality, the function may be considered to be piecewise 

continuous and the integral taken in the normal Riemann sense* 

Without any practical 

[Ab] Uniqueness of the Approximation. 

which furnishes the best approximations of the element x is uniquely 

determined when the space is strictly normalized, i.e. if the equality 

sign in the inequality 

The expression h1 gl + ...+ h n €5, 

holds only for y = obr (a - > 0 ) .  
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The space Lp(p > 1) furnishes an example of a s t r i c t l y  normalized space, 

WLILLC the space of cmtiricous P m c t i o ~ s  oii [a,b] ti3th f I x I I 

is not s t r i c t l y  normalized. 

- I f  1 = mx I x ( t )  I 
a < t < b  

C 

- -  

(A51 Hilbert Space. 

the first two conditions of [A21 are  f u l f i l l e d )  i n  which for  every p a i r  

of flrnction x and y there is a corresponding number (x,y) (we r e s t r i c t  

Achieser defines Hilbert space as a l i nea r  space ( i .e .  

ourselves here t o  real quantaties) cal led the  scalar  product (or inner 

product) of the  f’unctions x and y, and s a t i s e i n g  the following conditions. 

Hilbert space represents a linear normalized i f  we put 

1 
I I x I I = (X,X>T 

2 

b 
The space L represents an example of a Hilbert space i f  we put 


